REPORT

QUARTERLY GROUNDWATER MONITORING RESULTS, FEBRUARY-MARCH 1999

AT THE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION JET PROPULSION LABORATORY

4800 Oak Grove Drive Pasadena, California 91109

Prepared by:

FOSTER WHEELER ENVIRONMENTAL CORPORATION

611 Anton Boulevard, Suite 800 Costa Mesa, California 92626

TABLE OF CONTENTS

		PAGE
LIS	ST OF TABLES	ii
LIS	ST OF FIGURES	iii
EX	ECUTIVE SUMMARY	v
	INTRODUCTION	
2.0	PROCEDURES	2-1
	2.1 SHALLOW MONITORING WELLS	
	2.2 DEEP MULTI-PORT MONITORING WELLS	
	2.3 FIELD QUALITY ASSURANCE/QUALITY CONTROL SAMPLES	2-3
3.0		
	3.1 VOLATILE ORGANIC COMPOUNDS RESULTS	3-1
	3.2 PERCHLORATE RESULTS	3-2
	3.3 METALS RESULTS	
	3.4 1,4-DIOXANE AND NDMA RESULTS	
	3.5 QUALITY ASSURANCE/QUALITY CONTROL RESULTS	3-3
4.0	GENERAL WATER CHEMISTRY	4-1
	4.1 ANALYTICAL RESULTS	
	4.2 QUALITY ASSURANCE/QUALITY CONTROL RESULTS	4-2
5.0	WATER-LEVEL MEASUREMENTS	5-1
6.0	REFERENCES	6-1
TA	BLES	
FIG	GURES	
AP)	PENDICES	
	Appendix A - Well Development/Well Sampling Log Forms for Shallow Wells	
	Appendix B - Well Development/Well Sampling Log Forms, Piezometric Pressure Profile Records, and Groundwater Sampling Field Data Sheets for Deep Multi-Port Wells	
	Appendix C - Field Instrument Calibration Forms	
	Appendix D - Laboratory Analytical Reports and Chain-of-Custody Forms	

LIST OF TABLES

Table 1-1	Summary of Well Construction Details for JPL Groundwater Monitoring Wells
Table 3-1	Summary of Analyses Performed on Groundwater Samples Collected from JPL Monitoring Wells, February-March 1999
Table 3-2	Location of Well Screens in Aquifer Layers
Table 3-3	Summary of Volatile Organic Compounds and Perchlorate Detected in Groundwater Samples Collected from JPL Monitoring Wells, February-March 1999
Table 3-4	Summary of Volatile Organic Compounds and Perchlorate Detected During the Long-Term Quarterly Groundwater Sampling Program, Jet Propulsion Laboratory
Table 3-5	Results of Metals Analyses of Groundwater Samples Collected from JPL Monitoring Wells, February-March 1999
Table 3-6	Summary of Metals Detected During the Long-Term Quarterly Sampling Program, Jet Propulsion Laboratory
Table 4-1	Summary of Water-Chemistry Results for Groundwater Samples Collected from JPL Monitoring Wells, February-March 1999
Table 4-2	General Water Types Observed During the February-March 1999 Sampling Event as Interpreted With Stiff Diagrams
Table 4-3	Summary of Quality Control Analyses of Water-Chemistry Data from Groundwater Samples Collected from JPL Monitoring Wells, February-March 1999
Table 5-1	Groundwater Monitoring Well Water-Level Measurements, February 19, 1999
Table 5-2	Groundwater Monitoring Well Water-Level Measurements, March 24, 1999

LIST OF FIGURES

Figure 1-1	Locations of JPL Groundwater Monitoring Wells and Nearby Municipal Production Wells
Figure 3-1	Contours of Carbon Tetrachloride Concentrations in Aquifer Layer 1, February-March 1999
Figure 3-2	Contours of Carbon Tetrachloride Concentrations in Aquifer Layer 2, February-March 1999
Figure 3-3	Contours of Carbon Tetrachloride Concentrations in Aquifer Layer 3, February-March 1999
Figure 3-4	Contours of Trichloroethene Concentrations in Aquifer Layer 1, February-March 1999
Figure 3-5	Contours of Trichloroethene Concentrations in Aquifer Layer 2, February-March 1999
Figure 3-6	Contours of Trichloroethene Concentrations in Aquifer Layer 3, February-March 1999
Figure 3-7	Contours of 1,2-Dichloroethane Concentrations in Aquifer Layer 1, February-March 1999
Figure 3-8	Contours of Tetrachloroethene Concentrations in Aquifer Layer 1, February-March 1999
Figure 3-9	Contours of Tetrachloroethene Concentrations in Aquifer Layer 2, February-March 1999
Figure 3-10	Contours of Tetrachloroethene Concentrations in Aquifer Layer 3, February-March 1999
Figure 3-11	Contours of Perchlorate Concentrations in Aquifer Layer 1, February-March 1999
Figure 3-12	Contours of Perchlorate Concentrations in Aquifer Layer 2, February-March 1999
Figure 3-13	Contours of Perchlorate Concentrations in Aquifer Layer 3, February-March 1999
Figure 4-1	Stiff Diagrams for Shallow On-Site JPL Monitoring Wells, February-March 1999
Figure 4-2	Stiff Diagrams for Deep On-Site JPL Monitoring Wells, February-March 1999
Figure 4-3	Stiff Diagrams for Off-Site JPL Monitoring Wells, February-March 1999

LIST OF FIGURES

(Continued)

Figure 5-1	Water-Table Elevation Contour Map, February 19, 1999
Figure 5-2	Water-Table Elevation Contour Map, March 24, 1999
Figure 5-3	Hydraulic Head Elevations from Deep Multi-Port Wells, February 19, 1999
Figure 5-4	Hydraulic Head Elevations from Deep Multi-Port Wells, March 24, 1999

EXECUTIVE SUMMARY

Presented in this report are the results of the tenth quarterly groundwater sampling event (February-March 1999) completed as part of a long-term quarterly groundwater monitoring program at the NASA-Jet Propulsion Laboratory (JPL). The long-term quarterly monitoring program was initiated in 1996 in response to a request from the United States Environmental Protection Agency (EPA). The program began during the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Remedial Investigation for on-site and off-site groundwater at JPL.

From February 24 to March 23, 1999, groundwater samples were collected from JPL monitoring wells (both on- and off-site) and analyzed for volatile organic compounds (VOCs), metals (arsenic, lead, total chromium, and hexavalent chromium), perchlorate, and major anions/cations. Analyses for 1,4-dioxane and n-nitroso-dimethylamine (NDMA) were performed on six samples collected from selected wells/screens to determine whether or not these chemicals are present in the groundwater beneath JPL.

Results indicate that only four VOCs (carbon tetrachloride, trichloroethene, tetrachloroethene and 1,2-dichloroethane) were detected at concentrations above state or Federal Maximum Contaminant Levels (MCLs) for drinking water. Perchlorate was detected at concentrations exceeding the state Interim Action Level (IAL) of 18 μ g/L. Hexavalent chromium was found in three wells. To date, an MCL has not been established for hexavalent chromium. Arsenic was detected in one well at a concentration below both state and Federal MCLs. Total chromium was infrequently detected at levels well below its MCL. Lead was detected in five wells at a concentration below its action level. A summary of the sampling procedures is included in Section 2.0 and a summary of the analytical results is included in Section 3.0.

Results from major anion/cation analyses (water chemistry) were used to identify the general water types beneath JPL during this sampling event. These results are presented in Section 4.0. Water-level measurements, recorded before and after sampling activities, are presented in Section 5.0.

1.0 INTRODUCTION

This report summarizes the results from the tenth groundwater sampling event completed as part of the long-term quarterly monitoring program currently being conducted at the NASA-Jet Propulsion Laboratory (JPL). The purpose of the program is to monitor the elevation, flow direction, and quality of the groundwater beneath and adjacent to the JPL site. From February 24 to March 23, 1999, Foster Wheeler Environmental Corporation (Foster Wheeler) personnel collected samples from all JPL monitoring wells (both on- and off-site). In addition, the water-level elevation at each well was measured prior to (February 19, 1999), and after (March 24, 1999) sampling to evaluate groundwater flow directions and gradients.

The locations of the JPL groundwater monitoring wells are shown in Figure 1-1. Monitoring wells MW-3, MW-4, MW-11, MW-12, MW-14, and MW-17 through MW-24 are deep multiport wells, each containing five screened intervals within a Westbay Instruments, Inc. (Westbay) multi-port casing system. Monitoring wells MW-1, MW-5, MW-6, MW-7, MW-8, MW-9, MW-10, MW-13, MW-15, and MW-16 are relatively shallow standpipe wells, each containing a single screened interval located just below the water table. Monitoring well MW-2 was not sampled since it was replaced with well MW-14 (Figure 1-1) as a JPL sampling point. A summary of the well construction details for the JPL groundwater monitoring wells is included in Table 1-1.

All of the JPL groundwater samples were taken to Montgomery Watson Laboratories in Pasadena, California, for chemical analysis. Samples collected for n-nitroso-dimethylamine (NDMA) analysis were shipped to Pacific Laboratories via Montgomery Watson Laboratories. Montgomery Watson Laboratories and Pacific Laboratories are both certified by the California Department of Health Services. The following analyses were performed on the samples collected at JPL:

Analysis	Well (Screen)	EPA Method
Volatile Organic Compounds (VOCs)	All	524.2
Total Chromium (Cr)	All	200.8
Hexavalent Chromium [Cr(VI)]	All	7196
Total Lead (Pb)	All	200.8
Total Arsenic (As)	All	200.9
Major Cations and Major Anions	All	Various
Perchlorate (ClO ₄ ⁻)	All	300.0, modified
1,4-Dioxane	MW-4(2), MW-7, MW-13, MW-16, MW-17(3), MW-24(1)	8270
NDMA	MW-4(2), MW-7, MW-13, MW-16, MW-17(3), MW-24(1)	1625C

In addition to groundwater samples, field quality assurance/quality control (QA/QC) samples, including trip blanks, equipment blanks, duplicate samples, and a field blank were collected for laboratory analysis. Sampling records for each shallow well are included in Appendix A, and sampling records and piezometric pressure profiling records for each deep multi-port well are included in Appendix B. Field instrument calibration forms are included in Appendix C, and laboratory analytical reports and associated chain-of-custody forms are included in Appendix D.

2.0 SAMPLING AND FIELD QUALITY ASSURANCE/ QUALITY CONTROL PROCEDURES

Two different procedures were used in collection of groundwater samples at JPL, one designed for the shallow wells and the other for the deep multi-port wells. These procedures are outlined below.

2.1 SHALLOW MONITORING WELLS

The sampling procedure described below was applied to all the shallow JPL monitoring wells, which includes monitoring wells MW-1, MW-5, MW-6, MW-7, MW-8, MW-9, MW-10, MW-13, MW-15, and MW-16.

The primary equipment used to sample the shallow wells included dedicated 2-inch Grundfos Redi-Flo2® pumps, a pump controller, and a 220-volt generator. All of the dedicated 2-inch Grundfos Redi-Flo2® pump systems were decontaminated prior to their installation before the beginning of the long-term quarterly monitoring program. Details of the decontamination procedures for the Grundfos Redi-Flo2® pump systems are outlined in a previous document (Ebasco, 1993a).

Prior to sample collection, the water in each shallow well casing was purged (by pumping) to remove groundwater that may have been exposed to the atmosphere and thus may not be representative of undisturbed aquifer conditions. This purged groundwater was discharged into 500- or 1,000-gallon polyethylene storage tanks for disposal by JPL personnel pursuant to Environmental Protection Agency (EPA) guidance (EPA, 1991 and 1992).

Temperature, pH, electrical conductivity and turbidity of the water removed from each well were monitored during purging. After these parameters had stabilized (when two successive measurements made approximately 3 minutes apart were within 10 percent of each other) and the turbidity was less than 5 Nephelometric Turbidity Units, the groundwater samples were collected with the dedicated pump. During sampling for VOCs, the pump rate was reduced to approximately 0.02 gallons per minute to minimize sample agitation. All information concerning sampling was noted on the Well Development/Well Sampling Log Forms included in Appendix A.

All sample bottles were filled completely (though not allowed to overflow), capped, labeled, and placed in a cooler with ice immediately thereafter. Samples collected for VOCs had zero headspace.

Calibration, or standardization, of the field instruments used to measure temperature, pH, electrical conductivity, and turbidity, was performed to the manufacturer's specifications at the beginning and end of each sampling day. Field instrument calibration forms are included in Appendix C.

2.2 DEEP MULTI-PORT MONITORING WELLS

Sampling of the deep multi-port monitoring wells at JPL required specialized sampling equipment manufactured by Westbay. This equipment included a pressure profiling/sampling probe with a surface control unit. Field personnel using this equipment were trained by Westbay personnel to ensure proper use. Copies of the detailed operations manuals for the Westbay pressure profiling/sampling probe are included in the OU-1 and OU-3 Field Sampling and Analysis Plans (Ebasco, 1993a; 1994).

The Westbay sampling probe and sample-collection bottles were decontaminated prior to sampling each screened interval in the deep multi-port wells according to the following procedures:

- Wash each 250-mL stainless-steel sample-collection bottle in a solution of non-phosphate detergent (Liquinox®) and distilled water followed by washing each bottle in a solution of an acidic detergent (Citranox®) and American Society of Testing Materials (ASTM) Type II organic free water.
- Rinse each bottle with ASTM Type II water.
- The interior surfaces of the Westbay sampling probe, and the hoses and valves associated with the Westbay sample bottles, were decontaminated by forcing several volumes of a solution of Liquinox® and distilled water through them followed by forcing several volumes of a Citranox® and ASTM Type II water solution through them. A final rinse with ASTM Type II water was carried out. Each of these decontamination procedures was completed using a clean plastic squeeze bottle used only for this purpose.

Purging before sampling is not required in the deep multi-port monitoring wells because the groundwater sample is collected directly from the aquifer, thus ensuring that the groundwater sample has not been exposed to the atmosphere. However, at each screened interval an initial sample was collected in order to check temperature, pH, conductivity, and turbidity in the field, and to rinse the Westbay stainless-steel sample-collection bottles with formation water. Samples for laboratory analysis were then collected and transferred to sample containers as described in Section 2.1. A final sample was then collected and the temperature, pH, conductivity, and turbidity were measured to ensure continuity of aquifer conditions during sampling. Results of the field analyses were recorded on well development logs, which are included in Appendix B. Calibration of field instruments was carried out according to procedures described previously (Ebasco, 1993a; 1994).

2.3 FIELD QUALITY ASSURANCE/QUALITY CONTROL SAMPLES

To verify the quality of the groundwater samples collected from the JPL monitoring wells, field QA/QC samples were collected. The field QA/QC program included the collection of duplicate samples, equipment blanks, trip blanks, and a field blank. In addition, laboratory QA/QC samples were used by the laboratory according to analytical method requirements.

Duplicate samples for VOCs, metals and perchlorate (ClO₄⁻) analyses were collected from shallow groundwater monitoring wells MW-10 and MW-13, and deep multi-port monitoring wells MW-4 (Screen 2) and MW-12 (Screen 2). In addition, after every 10 samples that were collected for VOC analyses, a matrix-spike (MS) sample and a matrix-spike-duplicate (MSD) sample were collected and submitted to the laboratory for use in verifying the accuracy of the analytical method. Similarly, after every 10 samples that were collected for metals analyses, an MS/MSD sample was collected and submitted to the laboratory for analytical method verification. MS/MSD samples for 1,4-dioxane and NDMA were also submitted.

One equipment blank was collected from the Westbay sample bottles during each day of sampling of the deep multi-port wells. Equipment blanks consisted of ASTM Type II organic free water (provided by the laboratory) which had been passed through the sampling equipment after the equipment had been decontaminated. Equipment blanks were analyzed for the same constituents (except cations and anions) as the groundwater samples to identify potential cross contamination due to inadequate decontamination procedures. Equipment blanks were not collected during sampling of the shallow wells as dedicated sampling equipment was used.

A trip blank, consisting of ASTM Type II water placed in two 40-mL glass vials by the laboratory, was transported with the empty sample bottles to the field and back to the laboratory with the groundwater samples. One trip blank was submitted for VOC analysis with each shipment of groundwater samples to the laboratory. Trip blanks were used to identify potential cross contamination of groundwater samples during transport.

During this sampling event, one field blank was collected at monitoring well MW-7. The field blank is used to determine whether ambient conditions or sample containers may effect analytical results. The field blank consisted of sample bottles, filled with ASTM Type II organic-free water supplied by the laboratory, left open at the well head during the sampling of the well. After sampling, the bottles containing the field blank were capped and analyzed for the same constituents as the groundwater samples, except for cations and anions, which are used solely for the purpose of identifying water types beneath and adjacent to the JPL site.

3.0 ANALYTICAL RESULTS

JPL groundwater monitoring wells MW-1, and MW-3 through MW-24 were sampled from February 24 to March 23, 1999. Monitoring well MW-2 was not sampled as it was replaced as a JPL monitoring point by deep multi-port monitoring well MW-14.

The groundwater samples collected during this sampling event were analyzed for volatile organic compounds (VOCs), total chromium (Cr), hexavalent chromium [Cr(VI)], total lead (Pb), total arsenic (As), and perchlorate (ClO₄). Samples collected from selected wells/screens were also analyzed for 1,4-dioxane and n-nitroso-dimethylamine (NDMA). In addition, all samples were analyzed for general water chemistry parameters that included major cations and anions [sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), alkalinity (CO₃ + HCO₃), chloride (Cl), sulfate (SO₄), nitrate (NO₃)], total dissolved solids (TDS), electrical conductivity and pH. A summary of the samples collected, sample numbers used, and the analyses performed on each sample is presented in Table 3-1. Analytical laboratory reports and associated chain-of-custody forms are included in Appendix D.

3.1 VOLATILE ORGANIC COMPOUNDS RESULTS

Groundwater samples collected during the February-March 1999 sampling event were analyzed for over 60 different VOCs in accordance with EPA Method 524.2. To present the results on concentration contour maps, the JPL aquifer was divided into four aquifer layers based primarily on correlations interpreted from lithologic cross sections. Listed in Table 3-2 are the JPL monitoring well screens and their corresponding aquifer layers. Results of the analyses for VOCs in the February-March 1999 samples are summarized in Table 3-3 along with the Maximum Contaminant Levels (MCLs) for drinking water as listed in Title 22 of the California Code of Regulations and in the EPA Health Advisory Guidelines. A small number of compounds were detected in the JPL samples, and only four VOCs [carbon tetrachloride (CCl₄), trichloroethene (TCE), tetrachloroethene (PCE), and 1,2-dichloroethane (1,2-DCA)] were found in concentrations exceeding state and/or Federal MCLs (Table 3-3). The concentrations of CCl₄, TCE, PCE, and 1,2-DCA detected in each aquifer layer are contoured on site maps to show the spatial distribution of each constituent. For instances where a constituent was not detected in a particular aquifer layer, a contour map was not prepared for that constituent in that particular layer. Carbon tetrachloride concentrations detected in aquifer Layers 1, 2 and 3 are contoured in Figures 3-1, 3-2 and 3-3, respectively. Figures 3-4, 3-5 and 3-6 display contours of TCE concentrations detected in Layers 1, 2 and 3, respectively, and Figure 3-7 contains contours of 1,2-DCA concentrations detected in aquifer Layer 1. Figures 3-8, 3-9 and 3-10 show contours of PCE

detected in aquifer Layers 1, 2 and 3. A summary of the VOC results compiled from all ten long-term quarterly sampling events completed to date is provided in Table 3-4.

CCl₄ in excess of the state MCL (0.5 μ g/L) was found in eight on-site wells at JPL, and one JPL off-site well (Table 3-3, Figures 3-1, 3-2 and 3-3). The Federal MCL (5.0 μ g/L) was exceeded in five on-site wells. The highest concentrations of CCl₄ were found in on-site wells MW-7, MW-12 (Screen 3), MW-16 and MW-24 (Screen 2).

TCE concentrations met or exceeded the state and Federal MCL (5.0 μ g/L) in six on-site wells, and one off-site well (Table 3-3, Figures 3-4, 3-5, and 3-6). The highest levels of TCE were found in on-site wells MW-7, MW-13, MW-16 and off-site well MW-21 (Screen 1).

1,2-DCA was detected in two on-site wells (MW-13 and MW-16) in excess of its state MCL (0.5 μ g/L) (Table 3-3 and Figure 3-7). 1,2-DCA was not detected in any off-site well. The Federal MCL for 1,2-DCA (5.0 μ g/L) was not exceeded in any well.

PCE was detected at low levels in several on-site and off-site wells (Figures 3-8, 3-9 and 3-10). The state and Federal MCL (5.0 μ g/L) was exceeded only in off-site well, MW-21 (Screen 5).

3.2 PERCHLORATE RESULTS

Perchlorate analyses were conducted on groundwater samples from the February-March 1999 event using ion chromatography (EPA 300.0, modified). Results are included in Table 3-3. No MCLs for ClO₄⁻ have been established to date, however, the California Department of Health Services has established an Interim Action Level (IAL) of 18 μg/L for ClO₄⁻. Perchlorate was detected in a total of 14 wells (Table 3-3). Concentrations in seven of the thirteen wells exceeded the Interim Action Level (18 μg/L). Perchlorate concentrations are contoured in Figures 3-11, 3-12 and 3-13 for aquifer Layers 1, 2 and 3, respectively. The highest ClO₄⁻ levels were observed onsite in wells MW-7, MW-13, MW-16, and MW-24 (Screen 2).

3.3 METALS RESULTS

Groundwater samples were analyzed for the following suite of metals: total As, total Pb, total Cr, and Cr(VI). The results of these analyses are summarized below and in Table 3-5.

Total As was detected in only one JPL groundwater sample at a concentration well below both state and Federal MCLs during the February-March 1999 event. Total Pb was detected at a level well below the state and Federal Action Level (0.015 mg/L) in five wells, MW-17, MW-18, MW-20 and MW-24. Total Cr was detected in four wells, MW-6, MW-13, MW-16 and MW-24 (Screen 3)] at concentrations below state and Federal drinking water standards (0.05 and 0.10 mg/L, respectively). Hexavalent chromium was detected in two on-site shallow wells MW-13

and MW-16; and one off-site well (MW-18). At this time, neither state nor Federal agencies have established an MCL for Cr(VI).

Table 3-6 contains a summary of metals data from all ten quarterly sampling events completed to date during the long-term monitoring program.

3.4 1,4-DIOXANE AND NDMA RESULTS

Groundwater samples were collected from six locations [MW-4 (Screen 2), MW-7, MW-13, MW-16, MW-17 (Screen 3), and MW-24 (Screen 1)] during the February-March 1999 sampling event and analyzed for 1,4-dioxane and NDMA to screen for the presence of these chemicals in the groundwater beneath JPL. Samples from these six wells have historically contained the highest concentrations of VOCs at JPL. 1,4-Dioxane was analyzed using EPA Method 8270 and NDMA was analyzed using EPA Method 1625C. At this time, state or Federal MCLs have not been established for either of these compounds. The method detection limits for 1,4-dioxane and NDMA are $3.0~\mu g/L$ and $0.03~\mu g/L$, respectively. 1,4-Dioxane was detected once, in MW-16 (3.7 $\mu g/L$), and NDMA was not detected in any of the six samples collected.

3.5 QUALITY ASSURANCE/QUALITY CONTROL RESULTS

Review of the QA/QC data provided with the laboratory analytical results (Appendix D) indicates that results obtained from February-March 1999 samples are acceptable for their intended use of characterizing aquifer quality. Surrogate compound, matrix and blank spike, and method blank results were used by the laboratory to determine the accuracy and precision of the analytical techniques with respect to the JPL groundwater matrix, and to identify anomalous results due to laboratory contamination or instrument malfunction.

In addition to laboratory QA/QC samples, Foster Wheeler personnel collected QA/QC samples in the field. These samples included duplicate samples, equipment blanks, trip blanks and a field blank.

Duplicate samples were used to evaluate the precision of the laboratory analyses. Duplicate groundwater samples were collected from MW-4 (Screen 2), MW-10, MW-12 (Screen 2), and MW-13 and analyzed for VOCs, ClO₄⁻ and metals. All of the analytical results for the duplicate samples were similar to the results of the original groundwater samples (Table 3-3 and Table 3-5).

Seventeen equipment blanks and twenty trip blanks were submitted for analysis during the February-March 1999 sampling event. Freon 113 was detected in five of the trip blanks and five of the equipment blanks. Freon was also detected in the associated method blanks and most of the associated groundwater samples. Most of these groundwater samples were from wells in which Freon 113 had not previously been detected. Because of this, and because Freon 113 was

detected in all laboratory method blanks with these samples, the presence of Freon 113 in the equipment blanks (and the groundwater samples) is attributed to laboratory contamination. This has been confirmed in the laboratory reports and via phone conversation with the laboratory.

Low levels of dichloromethane were also detected in two trip blanks and three equipment blanks. Dichloromethane is a common laboratory contaminant and has been detected in various QA/QC blanks in the past. Dichloromethane was not detected in associated groundwater samples, and therefore, cross contamination of samples is not indicated.

Chloroform was detected at very low levels ($<2.6 \,\mu\text{g/L}$) in one equipment blank, and chloroform was also detected in associated water samples. This has occurred sporadically in past sampling events, and it is believed that very low levels of chloroform may be present in the decontamination water.

Overall, the field QA/QC data suggest that contamination of groundwater samples through field procedures is insignificant.

4.0 GENERAL WATER CHEMISTRY

As part of this groundwater monitoring event, groundwater samples were submitted for analysis of major cations and anions in an effort to further understand the natural water chemistry of the groundwater beneath and adjacent to JPL. Samples from each of the JPL shallow monitoring wells and each of the deep multi-port wells were analyzed for major cations (Ca, Fe, Mg, Na, and K), major anions (Cl, SO₄, NO₃, CO₃ + HCO₃), pH, and total dissolved solids (TDS). The water chemistry results for this quarterly sampling event are summarized in Table 4-1.

4.1 ANALYTICAL RESULTS

To illustrate the relative proportions of the major cations and anions in each groundwater sample, the water chemistry results from the February-March 1999 event have been compiled as Stiff diagrams (Figures 4-1, 4-2 and 4-3). Review of the water chemistry data indicates that the majority of groundwater sampled at JPL can be classified as one of three general types, based on the predominant cation and anion, and the occurrence of other ions. These general water types include:

- Type 1. Calcium-bicarbonate groundwater. Groundwater with Ca as the dominant cation and HCO₃ as the dominant anion.
- Type 2. Sodium-bicarbonate groundwater. Groundwater with Na as the dominant cation and HCO₃ as the dominant anion.
- Type 3. Calcium-bicarbonate/chloride/sulfate groundwater. Groundwater with Ca as the dominant cation and HCO₃ as the dominant anion, but with relatively elevated Cl and SO₄ concentrations.

In addition to the general water types described above, the analytical data suggest that these water types mix, or blend with one another, creating "intermediate" water types. For example, water Types 1 and 2 can mix to create a 1+2 or a 2+1 type, where the first number indicates the general water type that is predominant in the mixture. The Stiff diagrams presented in Figures 4-1 through 4-3 contain some graphical representations of these "intermediate" water types.

Water Type 1, the calcium-bicarbonate water type, was the most common water type at JPL during the February-March 1999 sampling event. In general, it was found at relatively shallow depths in wells located around the Arroyo Seco. Water Type 2, the sodium-bicarbonate water type (including associated blends), was typically found in the deeper well screens of both the on-site and off-site multi-port wells. Type 3 groundwater, the calcium-bicarbonate/chloride/sulfate water type, was prevalent in the shallower screens of the monitoring wells located upgradient and

to the south of the JPL facility. A list of water types and JPL monitoring wells in which they occur is provided in Table 4-2.

4.2 QUALITY ASSURANCE/QUALITY CONTROL RESULTS

To evaluate the general quality of the water chemistry data, two independent geochemical quality control checks of the analytical results from the February-March 1999 samples were performed. These checks included calculation of total ion-charge balances, and comparison of measured TDS to calculated TDS. The results of these checks for the February-March 1999 water-chemistry results are presented in Table 4-3. Charge balances are expressed as the percent difference between the sum of the equivalent weights of all of the anions and all of the cations analyzed (Freeze and Cherry, 1979). The ideal range for charge balances is ± 5 percent, although charge balance errors up to ± 10 percent are considered acceptable.

The charge balances for samples analyzed for major anions and cations during the February-March 1999 sampling event are within the ideal range (±5 percent) for all wells. This indicates that the results are acceptable for their intended use.

TDS results can be used to verify that all of the important water-chemistry constituents have been analyzed. This is done by comparing the measured laboratory TDS value to a calculated TDS value (calculated as the sum of the concentrations of all the major anions and cations) for each sample. Under ideal conditions, the ratio should range from 1.0 to 1.2 (Oppenheimer and Eaton, 1986).

The ratio of measured to calculated TDS values for the February-March 1999 water-chemistry results fell within the ideal range (1.0 to 1.2) for 73 of the 75 sets of water chemistry analyses performed (Table 4-3). The ratio for the remaining four sets of water chemistry data fell slightly outside this ideal range suggesting minor analytical errors or errors in the measured TDS values. However, these data are suitable for their intended use of identifying differences in water chemistry across the site.

Yaraterates P

5.0 WATER-LEVEL MEASUREMENTS

Water-level measurements were recorded before sampling, on February 19, 1999, and after sampling, on March 24, 1999, to evaluate groundwater flow directions and gradients beneath and adjacent to JPL. Water-level data in the shallow wells were collected using a Solinst® water-level meter that utilized a water-sensor probe attached to a measuring tape. As the probe was lowered into a well, contact with the groundwater completed a circuit between two electrodes in the probe, thus activating a sounding device attached to a reel at the surface. Depth to groundwater was then read directly from the measuring tape at the top of the well casing.

In the deep multi-port wells, the hydraulic head at each sampling port in each screened interval was measured with a pressure-transducer probe manufactured by Westbay specifically for the unique casing used in these wells.

Water-table elevation measurements taken before sampling are provided in Table 5-1 and have been contoured in Figure 5-1. Water-table elevation measurements taken after sampling are provided in Table 5-2 and have been contoured in Figure 5-2. The hydraulic heads measured at each deep multi-port well screen before and after sampling are presented graphically in Figures 5-3 and 5-4, respectively. The pressure-profile records for the deep wells are included in Appendix B.

As indicated by Figures 5-1 and 5-2, groundwater flow was primarily to the south and east both before and after sampling. The "trough" of depression observed around the City of Pasadena municipal production wells (Figures 5-1 and 5-2) is the result of active pumping by several of these wells throughout this sampling event. This is also indicated by data shown in Figures 5-3 and 5-4 where the effects of municipal well pumping are reflected by relatively large drawdowns in the hydraulic heads measured at the lowermost screens within the multi-port wells closest to the production wells (MW-3, -4, -11, -12, -17 and -19).

6.0 REFERENCES

- EPA, 1991. Management of Investigation-Derived Wastes During Site Inspections: USEPA Office of Research and Development: EPA/540/G-91/009, May 1991, 35 pp.
- EPA, 1992. Guide to Management of Investigation-Derived Wastes: USEPA Office of Solid Wastes and Emergency Response, Publication: 9345.3-03FS, April 1992.
- Ebasco, 1993a. Field Sampling and Analysis Plan for Performing a Remedial Investigation at Operable Unit 1: On-Site Groundwater. NASA-Jet Propulsion Laboratory. December, 1993.
- Ebasco, 1993b. Quality Assurance Program for Performing a Remedial Investigation for the NASA-Jet Propulsion Laboratory. December, 1993.
- Ebasco, 1994. Field Sampling and Analysis Plan for Performing a Remedial Investigation at Operable Unit 3: Off-Site Groundwater. NASA-Jet Propulsion Laboratory. May, 1994.
- Freeze, A. R., and Cherry, J. A., 1979. Groundwater. Prentice Hall, Englewood Cliffs, New Jersey, 604 pp.
- Oppenheimer, J., and Eaton, D., 1986. Quality Control in Mineral Analysis, WQTC, Houston, Texas. Proceedings, pp. 15-34.

TABLES

TABLE 1-1
SUMMARY OF WELL CONSTRUCTION DETAILS FOR JPL GROUNDWATER MONITORING WELLS

Well Number	Well Type	Year Installed	Drilling Method	Depth to Bottom of Casing (feet)	Depth of Screened Interval (feet)	Elevation Top 4 inch Casing (feet above mean sea level)	Elevation of Screened Interval (feet above mean sea level)	Multi-Port Well Screen Number	Sand Pack (feet)	Screen Slot Size (inch)	Casing Material
MW-1	Shallow Standpipe	1989	Mud Rotary	120	70-110	1116.7	1006.70-1046.70	•	99		4" PVC
MW-2	Shallow Standpipe	1989	Mud Rotary	177	127-167	1168.85	1001.85-1041.85	**			
MW-3	Deep Multi-Port	1990	Mud Rotary	700	170-180 250-260	1099.82	919.82-929.82 839.82-849.82	1 2	37 47	0.010 0.010	4" low-carbon steel 4" low-carbon steel
					344-354 555-565 650-660		745.82-755.82 534.82-544.82 433.82-443.82	3 4 5	45 39 64	0.010 0.010 0.010	4" low-carbon steel 4" low-carbon steel 4" low-carbon steel
MW-4	Deep Multi-Port	1990	Mud Rotary	559	147-157 237-247 318-328 389-399 509-519	1082.72	925.72-935.72 835.72-845.72 754.72-764.72 683.72-693.72 563.72-573.72	1 2 3 4 5	48 34 42 54 52	0.010 0.010 0.010 0.010 0.010	4" low-carbon steel
MW-5	Shallow Standpipe	1990	Air Percussion	140	85-135	1071.6	936.60-986.60	-	71	0.010	4" low-carbon steel
MW-6	Shallow Standpipe	1990	Air Percussion	245	195-245	1188.52	943.52-993.52	-	62	0.010	4" low-carbon steel
MW-7	Shallow Standpipe	1990	Air Percussion	275	225-275	1212.88	937.88-987.88	-	63	0.010	4" low-carbon steel
MW-8	Shallow Standpipe	1992	Air Percussion	205	155-205	1139.53	934.53-984.53	-	75	0.010	4" low-carbon steel
MW-9	Shallow Standpipe	1992	Air Percussion	68	18-68	1106.02	1038.02-1088.02	-	56	0.010	4" PVC
MW-10	Shallow Standpipe	1992	Air Percussion	155	105-155	1087.71	932.71-982.71	-	67.5	0.010	4" PVC (0-85') 4" stainless steel (85'-105')
MW-11	Deep Multi-Port	1992	Mud Rotary	680	140-150 250-260 420-430 515-525 630-640	1139.35	989.35-999.35 879.35-889.35 709.35-719.35 614.35-624.35 499.35-509.35	1 2 3 4 5	24 22 26 26 28	0.010 0.010 0.010 0.010 0.010	4" low-carbon steel

TABLE 1-1 SUMMARY OF WELL CONSTRUCTION DETAILS FOR JPL GROUNDWATER MONITORING WELLS

Well Number	Well Type	Year Installed	Drilling Method	Depth to Bottom of Casing (feet)	Depth of Screened Interval (feet)	Elevation Top 4 inch Casing (feet above mean sea level)	Elevation of Screened Interval (feet above mean sea level)	Multi-Port Well Screen Number	Sand Pack (feet)	Screen Slot Size (inch)	Casing Material
MW-12	Deep Multi-Port	1994	Mud Rotary	596	135-145	1102.14	957.14-967.14	1	22	0.010	4" low-carbon steel
					240-250		852.14-862.14	2	19	0.010	4" low-carbon steel
					315-325		777.14-787.14	3	21	0.010	4" low-carbon steel
					430-440		662.14-672.14	4	22	0.010	4" low-carbon steel
					546-556		546.14-556.14	5	21	0.010	4" low-carbon steel
MW-13	Shallow Standpipe	1994	Air Rotary	235	180-230	1183.47	953.47-1003.47	_	65	0.010	4" PVC
MW-14	Deep Multi-Port	1994	Mud Rotary	588	205-215	1173.42	958.42-968.42	1	22	0.010	4" low-carbon steel
					275-285		888.42-898.42	2	26	0.010	4" low-carbon steel
					380-390		783.42-793.42	3	22	0.010	4" low-carbon steel
					453-463		710.42-720.42	4	27	0.010	4" low-carbon steel
					538-548		625.42-635.42	5	21	0.010	4" low-carbon steel
MW-15	Shallow Standpipe	1994	Air Percussion	74	19-69	1120.66	1051.66-1101.66	-	60	0.010	4" stainless steel
MW-16	Shallow Standpipe	1994	Air Percussion	285	230-280	1236.27	956.27-1006.27	-	62	0.010	4.5" PVC
MW-17	Deep Multi-Port	1995	Mud Rotary	774	246-256	1190.99	934.99-944.99	1	24	0.010	4" low-carbon steel
					366-376		814.99-824.99	2	24	0.010	4" low-carbon steel
					466-476		714.99-724.99	3	27	0.010	4" low-carbon steel
					578-588		602.99-612.99	4	25	0.010	4" low-carbon steel
					723-733		457.99-467.99	5	22	0.010	4" low-carbon steel
MW-18	Deep Multi-Port	1995	Mud Rotary	732	266-276	1225.34	949.34-959.34	1	22	0.010	4" low-carbon steel
					326-336		889.34-899.34	2	24	0.010	4" low-carbon steel
					421-431		794.34-804.34	3	20	0.010	4" low-carbon steel
					561-571		654.34-664.34	4	22	0.010	4" low-carbon steel
					681-691		534.34-544.34	5	23	0.010	4" low-carbon steel
MW-19	Deep Multi-Port	1995	Mud Rotary	543	240-250	1143.2	893.20-903.20	1	20	0.010	4" low-carbon steel
					310-320		823.20-833.20	2	20	0.010	4" low-carbon steel
					390-400		743.20-753.20	3	17	0.010	4" low-carbon steel
					442-452		691.20-701.20	4	20	0.010	4" low-carbon steel
					492-502		641.20-651.20	5	22	0.010	4" low-carbon steel

TABLE 1-1
SUMMARY OF WELL CONSTRUCTION DETAILS FOR JPL GROUNDWATER MONITORING WELLS

Well Number	Well Type	Year Installed	Drilling Method	Depth to Bottom of Casing (feet)	Depth of Screened Interval (feet)	Elevation Top 4 inch Casing (feet above mean sea level)	Elevation of Screened Interval (feet above mean sea level)	Multi-Port Well Screen Number	Sand Pack (feet)	Screen Slot Size (inch)	Casing Material
MW-20	Deep Multi-Port	1995	Mud Rotary	948	228-238	1164.89	926.89-936.89	1	24	0.010	4" low-carbon steel
					388-398		766.89-776.89	2	23	0.010	4" low-carbon steel
•					558-568		596.89-606.89	3	19	0.010	4" low-carbon steel
					698-708		456.89-466.89	4	23	0.010	4" low-carbon steel
					898-908		256.89-266.89	5	27	0.010	4" low-carbon steel
MW-21	Deep Multi-Port	1995	Mud Rotary	416	86-96	1058.99	962.99-972.99	1	26	0.010	4" low-carbon steel
					156-166		892.99-902.99	2	25	0.010	4" low-carbon steel
					236-246		812.99-822.99	3	21	0.010	4" low-carbon steel
					306-316		742.99-752.99	4	22	0.010	4" low-carbon steel
					366-376		682.99-692.99	5	22	0.010	4" low-carbon steel
MW-22	Deep Multi-Port	1997	Mud Rotary	634	239-249	1176.81	927.81-937.81	1	24	0.010	4" low-carbon steel
					324-334		842.81-852.81	2	21	0.010	4" low-carbon steel
					384-394		782.81-792.81	3	22	0.010	4" low-carbon steel
					464-474		702.81-712.81	4	23	0.010	4" low-carbon steel
					584-594		582.81-592.81	5	22	0.010	4" low-carbon steel
MW-23	Deep Multi-Port	1997	Mud Rotary	590	170-180	1108.34	928.34-938.34	1	23	0.010	4" low-carbon steel
					250-260		843.34-858.34	2	20.5	0.010	4" low-carbon steel
				•	315-325		783.34-793.34	3	18	0.010	4" low-carbon steel
					440-450		658.34-668.34	4	25	0.010	4" low-carbon steel
				· · · · · · · · · · · · · · · · · · ·	540-550		558.34-568.34	5	22.5	0.010	4" low-carbon steel
MW-24	Deep Multi-Port	1997	Mud Rotary	725	275-285	1200.91	915.91-925.91	1	25	0.010	4" low-carbon steel
					370-380		820.91-830.91	2	50	0.010	4" low-carbon steel
					430-440		760.91-770.91	3	25	0.010	4" low-carbon steel
					550-560		640.91-650.91	4	19	0.010	4" low-carbon steel
					675-685		515.91-525.91	5	16	0.010	4" low-carbon steel

TABLE 3-1

SUMMARY OF ANALYSES PERFORMED ON GROUNDWATER SAMPLES COLLECTED FROM JPL MONITORING WELLS, FEBRUARY-MARCH 1999

Sample Location	Sample Number	Sample Type	VOCs EPA 524.2	Total Cr, As, Pb, Major Cations (various)	Hexavalent Cr EPA 7196	Major Anions and TDS EPA 300.0/310.1	Perchlorate EPA 300.0 Modified	1,4-Dioxane EPA 8270	NDMA EPA 1625C
MW-1	MW-991-079	GW	X	X	X	X	X		
MW-3									
Screen 1	MW-991-078	GW	X	X	X	X	X		
Screen 2	MW-991-077	GW	X	X	X	X	X		
Screen 3	MW-991-076	GW	X	X	X	X	X		
Screen 4	MW-991-075	GW	X	X	X	X	X		
Screen 5	MW-991-074	GW	X	X	X	X	X		
MW-4									
Screen 1	MW-991-073	GW	X	X	X	X	X		
Screen 2	MW-991-072	GW	X	X	X	X	X	X	X
Screen 2	MW-991-071	DUP	X	X (no cations)	X		X		
Screen 3	MW-991-070	GW	X	X	X	X	X		
Screen 4	MW-991-069	GW	X	X	X	X	Χ		
Screen 5	MW-991-068	GW	X	X	X	X	X		
MW-5	MW-991-067	GW	X	X	X	X	X		
MW-6	MW-991-066	GW	X	X	X	X	X		
MW-7	MW-991-065	GW	X	X	X	X	X	X	X
MW-8	MW-991-064	GW	X	X	X	X	X		
MW-9	MW-991-063	GW	Х	X	Х	X	X		
MW-10	MW-991-062	GW	X	X	X	X	X		
MW-10	MW-991-061	DUP	X	X (no cations)	X		X		
MW-11									
Screen 1	MW-991-060	GW	X	X	X	X	X		
Screen 2	MW-991-059	GW	X	X	X	X	X		
Screen 3	MW-991-058	GW	X	X	X	X	X		
Screen 4	MW-991-057	GW	Х	X	X	X	X		
Screen 5	MW-991-056	GW	X	X	X	X	X		

TABLE 3-1

SUMMARY OF ANALYSES PERFORMED ON GROUNDWATER SAMPLES COLLECTED FROM JPL MONITORING WELLS, FEBRUARY-MARCH 1999

Sample	Sample	Sample	VOCs	Total Cr, As, Pb, Major	Hexavalent Cr	Major Anions and TDS	Perchlorate	1,4-Dioxane	NDMA
Location	Number	Туре	EPA 524.2	Cations (various)	EPA 7196	EPA 300.0/310.1	EPA 300.0 Modified	EPA 8270	EPA 1625C
MW-12									
Screen 1	MW-991-055	GW	X	X	X	X	X		
Screen 2	MW-991-054	GW	X	X	X	X	X		
Screen 2	MW-991-053	DUP	X	X (no cations)	X		X		
Screen 3	MW-991-052	GW	X	X	X	X	X		
Screen 4	MW-991-051	GW	X	X	X	X	X		
Screen 5	MW-991-050	GW	X	X	X	X	X		
MW-13	MW-991-049	GW	Х	X	X	X	X	Х	Х
MW-13	MW-991-048	DUP	X	X (no cations)	X		X		
MW-14									
Screen 1	MW-991-047	GW.	X	· X	X	X	X		
Screen 2	MW-991-046	GW	X	X	X	X	X		
Screen 3	MW-991-045	GW	Х	X	X	X	X		
Screen 4	MW-991-044	GW	X	X	X	X	X		
Screen 5	MW-991-043	GW	X	X	X	X	X		And the second
MW-15	MW-991-042	GW	Х	X	X	X	X		
MW-16	MW-991-041	GW	Х	X	Х	X	X	X	Х
MW-17						,			
Screen 1	MW-991-040	GW	X	X	X	X	X		
Screen 2	MW-991-039	GW	X	X	X	X	X		
Screen 3	MW-991-038	GW	X	X	X	X	X	X	X
Screen 4	MW-991-037	GW	X	X	X	X	X		
Screen 5	MW-991-036	GW	X	X	X	X	X		
MW-18	-								
Screen 1	MW-991-035	GW	X	X	X	X	X		
Screen 2	MW-991-034	GW	Х	X	X	X	X		
Screen 3	MW-991-033	GW	X	X	X	X	X		
Screen 4	MW-991-032	GW	X	X	X	X	X		
Screen 5	MW-991-031	GW	X	X	X	X	X		

TABLE 3-1

SUMMARY OF ANALYSES PERFORMED ON GROUNDWATER SAMPLES COLLECTED FROM JPL MONITORING WELLS, FEBRUARY-MARCH 1999

Sample Location	Sample Number	Sample Type	VOCs EPA 524.2	Total Cr, As, Pb, Major Cations (various)	Hexavalent Cr EPA 7196	Major Anions and TDS EPA 300.0/310.1	Perchlorate EPA 300.0 Modified	1,4-Dioxane EPA 8270	NDMA EPA 1625C
MW-19		<u> </u>							
Screen 1	MW-991-030	GW	X	X	X	X	X		
Screen 2	MW-991-029	GW	X	X	X	X	X		
Screen 3	MW-991-028	GW	X	X	X	X	X		
Screen 4	MW-991-027	GW	X	X	X	X	X		
Screen 5	MW-991-026	GW	X	X	X	X	X		
MW-20							-		
Screen 1	MW-991-025	GW	X	X	X	X	X		
Screen 2	MW-991-024	GW	X	X	X	X	X		
Screen 3	MW-991-023	GW	X	X	X	X	X		
Screen 4	MW-991-022	GW	X	X	X	X	X		
Screen 5	MW-991-021	GW	X	X	X	X	X		
MW-21			***************************************						
Screen 1	MW-991-020	GW	- X	X	X	X	X		
Screen 2	MW-991-019	GW	Х	X	X	X	X		
Screen 3	MW-991-018	GW	X	X	X	X	X		
Screen 4	MW-991-017	GW	X	X	X	X	X		
Screen 5	MW-991-016	GW	X	X	X	X	X		
MW-22									
Screen 1	MW-991-015	GW	X	X	X	X	X		
Screen 2	MW-991-014	GW	X	X	X	X	X		
Screen 3	MW-991-013	GW	X	X	X	X	X		
Screen 4	MW-991-012	GW	X	X	X	X	X		
Screen 5	MW-991-011	GW	X	X	X	X	X		
MW-23									
Screen 1	MW-991-010	GW	Х	X	X	X	X		
Screen 2	MW-991-009	GW	X	X	X	X	X		
Screen 3	MW-991-008	GW	Х	X	X	X	X		
Screen 4	MW-991-007	GW	X	X	X	X	X		
Screen 5	MW-991-006	GW	X	X	X	X	X		

TABLE 3-1

SUMMARY OF ANALYSES PERFORMED ON GROUNDWATER SAMPLES COLLECTED FROM JPL MONITORING WELLS, FEBRUARY-MARCH 1999

Sample Location	Sample Number	Sample Type	VOCs EPA 524.2	Total Cr, As, Pb, Major Cations (various)	Hexavalent Cr EPA 7196	Major Anions and TDS EPA 300:0/310.1	Perchlorate EPA 300.0 Modified	1,4-Dioxane EPA 8270	NDMA EPA 1625C
MW-24									
Screen 1	MW-991-005	GW	Х	X	X	X	X	Х	X
Screen 2	MW-991-004	GW	X	X	X	X	X		
Screen 3	MW-991-003	GW	X	X	X	X	X		
Screen 4	MW-991-002	GW	X	X	X	X	X		
Screen 5	MW-991-001	GW	Х	X	X	X	X		

GW: Groundwater Sample DUP: Duplicate Sample

TABLE 3-2
LOCATION OF WELL SCREENS IN AQUIFER LAYERS

		AQUIFER 1	LAYERS	
Well Number	Layer 1	Layer 2	Layer 3	Layer 4
MW-1	X			
MW-3				
Screen 1	X			
Screen 2		X		
Screen 3		X		
Screen 4			X	
Screen 5			X	
MW-4		-		
Screen 1	X			
Screen 2		X		
Screen 3		X		
Screen 4		X		····
Screen 5			X	
MW-5	X			
MW-6	X			
MW-7	X			
MW-8	X			
MW-9	X			
MW-10	X			
MW-11				
Screen 1	X		-	
Screen 2		X		
Screen 3		X		
Screen 4		X		
Screen 5		***************************************	X	
MW-12				
Screen 1	X			
Screen 2		X		
Screen 3		X	. •	
Screen 4		X		
Screen 5			X	
MW-13	X			
MW-14				
Screen 1	X			
Screen 2		X		
Screen 3		X		
Screen 4			X	
Screen 5			X	

TABLE 3-2
LOCATION OF WELL SCREENS IN AQUIFER LAYERS

		AQUIFER I	LAYERS	
Well Number	Layer 1	Layer 2	Layer 3	Layer 4
MW-15	X			
MW-16	X			
MW-17				
Screen 1	X			
Screen 2		X		
Screen 3		X	,	
Screen 4			X	
Screen 5			X	
MW-18				
Screen 1	X			
Screen 2	X			
Screen 3		X		
Screen 4			X	
Screen 5			X	
MW-19				
Screen 1	X			
Screen 2		X		
Screen 3		X		
Screen 4			X	
Screen 5			X	
MW-20				
Screen 1	X			
Screen 2		X		
Screen 3			X	
Screen 4			X	"
Screen 5				X
MW-21			•	
Screen 1	X			
Screen 2		X		
Screen 3		X		
Screen 4			X	
Screen 5			X	
MW-22				
Screen 1	X			
Screen 2		X		
Screen 3		X		
Screen 4			X	
Screen 5			X	

TABLE 3-2
LOCATION OF WELL SCREENS IN AQUIFER LAYERS

		AQUIFER I	LAYERS	
Well Number	Layer 1	Layer 2	Layer 3	Layer 4
MW-23				
Screen 1	X			
Screen 2		X		
Screen 3		X		
Screen 4			X	• • • • • • • • • • • • • • • • • • • •
Screen 5			X	
MW-24				
Screen 1	X			
Screen 2		X		
Screen 3		X		
Screen 4			X	·····
Screen 5			X	

TABLE 3-3

(concentrations in µg/L)

Sampling Location	Sample Number	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Chloroform	Other Volatile Organic Compounds	Perchlorate
MW-1	MW-991-079			**						**	
MW-3											
Screen 1	MW-991-078					**	**				
Screen 2	MW-991-077	**									
Screen 3	MW-991-076	4.5	1.3		••			0.9	42		
Screen 4	MW-991-075							**			
Screen 5	MW-991-074			-							
MW-4											
Screen 1	MW-991-073		***	••			••	0.8(B)			
Screen 2	MW-991-072	1.2	4.1	0.6	0.5		*-		2.5		38
Screen 2 (DUP)	MW-991-071	1.5	5.0	0.8					2.9		38
Screen 3	MW-991-070					-		0.7(B)			
Screen 4	MW-991-069							0.6(B)			
Screen 5	MW-991-068							0.6(B)			••
MW-5	MW-991-067		**		••						
MW-6	MW-991-066		0.8	3.8	1.0				0.6		
MW-7	MW-991-065	49	17	0.6		**	0.9	2.0	7.2	••	150
MW-8	MW-991-064		••				••				
MW-9	MW-991-063								••		••
MW-10	MW-991-062		5.7					ş.#	0.9	••	39
MW-10 (DUP)	MW-991-061	,	5.6						0.9		39

TABLE 3-3

(concentrations in µg/L)

Sampling Location	Sample Number	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Chloroform	Other Volatile Organic Compounds	Perchlorate
MW-11											
Screen 1	MW-991-060		**				••	0.9(B)	***		
Screen 2	MW-991-059				••			0.7(B)	1.1		
Screen 3	MW-991-058							0.7(B)		-	
Screen 4	MW-991-057							0.7(B)			
Screen 5	MW-991-056		+-					0.7(B)			
MW-12											
Screen 1	MW-991-055										
Screen 2	MW-991-054	1.3							0.9		4.1
Screen 2 (DUP)	MW-991-053	1.4							1.0		4.6
Screen 3	MW-991-052	23							4.5		
Screen 4	MW-991-051	4.5						**	1.2		7.0
Screen 5	MW-991-050	1.3							0.7		
MW-13	MW-991-049	9.4	28	••		0.7	0.7		11		98
MW-13 (DUP)	MW-991-048	8.4	29			0.6	0.6		9.8		98
MW-14											
Screen 1	MW-991-047			0.8	1.2			0.6(B)	0.6		4.2
Screen 2	MW-991-046		0.9	1.6	0.7			0.6(B)	0.6		4.2
Screen 3	MW-991-045			0.5			*-	0.6(B)	0.5		5.9
Screen 4	MW-991-044				••			0.6(B)			
Screen 5	MW-991-043							0.6(B)			
MW-15	MW-991-042	·				•#				97.40	
MW-16	MW-991-041	67	20	1.4		1.1	1.8	1.1	24		790

TABLE 3-3

(concentrations in μg/L)

Sampling Location	Sample Number	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Chloroform	Other Volatile Organic Compounds	Perchlorate
MW-17											
Screen 1	MW-991-040						,		••		
Screen 2	MW-991-039							1.0(B)	3.9		
Screen 3	MW-991-038		1.6		••				3.8		4.2
Screen 4	MW-991-037	••	3.8					1.0(B)	1.8		9.8
Screen 5	MW-991-036		4.9	••	• ••				2.1		6.4
MW-18									<u></u>		
Screen 1	MW-991-035									••	
Screen 2	MW-991-034				**				3.0	0.8 Bromodichloromethane	
Screen 3	MW-991-033		1.0	0.5	••				3.5		
Screen 4	MW-991-032	4.7	1.2	2.3	. ==		**		1.1		24
Screen 5	MW-991-031									-	
MW-19											
Screen 1	MW-991-030										
Screen 2	MW-991-029	**	0.6								+-
Screen 3	MW-991-028			1.5							
Screen 4	MW-991-027				**				3.0		••
Screen 5	MW-991-026			1.3							4-
MW-20											
Screen 1	MW-991-025						-		2.2		4.9
Screen 2	MW-991-024								4.2	- A4	
Screen 3	MW-991-023										
Screen 4	MW-991-022										
Screen 5	MW-991-021							**	••		***

TABLE 3-3

(concentrations in µg/L)

Sampling Location	Sample Number	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Chloroform	Other Volatile Organic Compounds	Perchlorate
MW-21											
Screen 1	MW-991-020		20	0.5				***	1.8		14
Screen 2	MW-991-019			0.8							
Screen 3	MW-991-018			1.0							4.1
Screen 4	MW-991-017			3.8						0.7 cis-1,2-Dichloroethene	
Screen 5	MW-991-016		0.5	7.7					0.7	1.4 cis-1,2-Dichloroethene	4.2
MW-22											
Screen 1	MW-991-015		0.6	3.6	1.0			1.3(B)	0.5	**	6.4
Screen 2	MW-991-014		0.6		••			1.4(B)		**	
Screen 3	MW-991-013							1.3(B)		-	
Screen 4	MW-991-012	**						1.3(B)			
Screen 5	MW-991-011		-		**		**	1.3(B)			
MW-23											
Screen 1	MW-991-010	0.6	15	1.1			1.4		1.9	0.6 1,2,3-Trichlorobenzene	8.4
Screen 2	MW-991-009		,						0.5		7.7
Screen 3	MW-991-008										*-
Screen 4	MW-991-007			••					+=		
Screen 5	MW-991-006									••	
MW-24											
Screen 1	MW-991-005	1.0	1.5		••	••	••		0.8		14
Screen 2	MW-991-004		3.0	1.0	**		1.5	-	6.6		580
Screen 3	MW-991-003		**								
Screen 4	MW-991-002	••									
Screen 5	MW-991-001				***						

TABLE 3-3

SUMMARY OF VOLATILE ORGANIC COMPOUNDS AND PERCHLORATE DETECTED IN GROUNDWATER SAMPLES COLLECTED FROM JPL MONITORING WELLS, FEBRUARY-MARCH 1999

(concentrations in µg/L)

Values above state or Federal MCLs or action levels are bold and shaded

Sampling Location	Sample Number	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Chloroform	Other Volatile Organic Compounds	Perchlorate
Practical Quantita	tion Limit	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	4.0
California Maxim Contaminant L		0.5	5.0	5.0	5.0	0.5	6.0	1,200	100	6 cis-1,2-Dichloroethene ^(a) 100 1,1,1-Trichloroethane ^(a)	18(1)
EPA Region IX N Contaminant L		5.0	5.0	5.0	NE	5.0	7.0	NE	100	70 cis-1,2-Dichloroethene(a) 200 1,1,1-Trichloroethane(a)	NE

--: Not detected

DUP: Duplicate

NE: Not established

- 1: California Department of Health Services Interim Action Level
- a: Only VOCs for which MCLs have been established are listed
- B: Attributed to Laboratory Contamination, compound also detected in laboratory method blanks.
- E: Estimated concentration; results exceed calibration range.

TABLE 3-4

SUMMARY OF VOLATILE ORGANIC COMPOUNDS AND PERCHLORATE DETECTED DURING THE LONG-TERM QUARTERLY GROUNDWATER SAMPLING PROGRAM, JET PROPULSION LABORATORY

(concentrations in µg/L)

Sampling Location	Sampling Event	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Total Trihalomethanes (Primarily Chloroform)	Other Volatile Organic Compounds	Perchlorate
MW-1	Aug/Sep 1996								₩.		NA
	Oct/Nov 1996									1.9 Acetone	NA
	Feb/Mar 1997									1.9 Acetone	NA
	Jun/Jul 1997										
	Sep/Oct 1997									1.3 m, p-xylenes	
	Jan/Feb 1998				<u></u>			••			
	Apr/May 1998		·								
	Jul/Aug 1998										
	Oct/Nov 1998	***					**			*-	
	Feb/Mar 1999	·							•••		
MW-3		··									
Screen 1	Aug/Sep 1996								1.2		NA
J	Oct/Nov 1996	**							8.3	0.7(B) Naphthalene	NA NA
	Feb/Mar 1997									2.6 Carbon disulfide	NA
	Jun/Jul 1997									2.0 Carbon disuride	
	Sep/Oct 1997										
	Jan/Feb 1998									·	
	Apr/May 1998										
	Jul/Aug 1998								<u></u>		
	Oct/Nov 1998										<u></u>
	Feb/Mar 1999										
Screen 2	Aug/Sep 1996								5.5		NA
Beleen 2	Oct/Nov 1996								4.8	1.9(B) Naphthalene	NA NA
	Feb/Mar 1997						•-		4.4	8.0 Carbon disulfide	NA NA
	Jun/Jul 1997							1.0	1.2	8.0 Carbon distince	INA
	Sep/Oct 1997								0.8		
	Jan/Feb 1998								0.0		
	Apr/May 1998										
	Jul/Aug 1998			••							
	Oct/Nov 1998										
	Feb/Mar 1999									••	
Screen 3	Aug/Sep 1996		0.8						1.6		NA
Sorcen 3	Oct/Nov 1996		V.0						0.7	 	NA NA
	Feb/Mar 1997								0.7		NA NA
	Jun/Jul 1997	1.2	0.8	0.6				2.8		••	
	Sep/Oct 1997	1.2	0.8	* * * * * * * * * * * * * * * * * * * *					1.8		21
	Jan/Feb 1998	1.2							1.6 2.7		13
	Apr/May 1998		0.9						3.9		6.5
		2.4	0.9								6.2
	Jul/Aug 1998 Oct/Nov 1998		0.6 0.7						3.6	2.7.0	10
			1.3						21	2.7 Carbon disulfide	
	Feb/Mar 1999	4.5	1.3					0.9	42		

SUMMARY OF VOLATILE ORGANIC COMPOUNDS AND PERCHLORATE DETECTED DURING THE LONG-TERM QUARTERLY GROUNDWATER SAMPLING PROGRAM, JET PROPULSION LABORATORY

(concentrations in µg/L)

Sampling Location	Sampling Event	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Total Trihalomethanes (Primarily Chloroform)	Other Volatile Organic Compounds	Perchlorate
Screen 4	Aug/Sep 1996					••					NA
	Oct/Nov 1996	· 								1.2 Acetone	NA
	Feb/Mar 1997									1.0 Hexane	NA
	Jun/Jul 1997							-	• •••		
	Sep/Oct 1997								••		
	Jan/Feb 1998									4.7 Carbon disulfide(4)	
	Apr/May 1998									• 	
	Jul/Aug 1998								•		
	Oct/Nov 1998										
	Feb/Mar 1999										
Screen 5	Aug/Sep 1996									2.1 Dichloromethane	NA
	Oct/Nov 1996						·			2.1 Acetone	NA
										1.2 Carbon disulfide	
	Feb/Mar 1997									1.5 Carbon disulfide	NA
							,			2.7 Sulfur dioxide	- 10 -
										1.3 Unknown (RT=2.51)	
	Jun/Jul 1997								·	4.5 Carbon disulfide	
	Sep/Oct 1997	, 									
	Jan/Feb 1998										
	Apr/May 1998								 .		
	Jul/Aug 1998										**
	Oct/Nov 1998								. 		91
	Feb/Mar 1999										**
(W-4											
Screen 1	Aug/Sep 1996									2.9(B) Acetone	NA
	Oct/Nov 1996					**					NA
	Feb/Mar 1997										NA
	Jun/Jul 1997				·						
	Sep/Oct 1997								-		7.4
	Jan/Feb 1998	••									9.6
	Apr/May 1998								ww.		
	Jul/Aug 1998									3.4 Dichloromethane(b)	
	Oct/Nov 1998										
	Feb/Mar 1999							0.8(B)		••	••
Screen 2	Aug/Sep 1996	5.5	19			0.9	0.7		6.7	3.2(B) Acetone	NA
	Oct/Nov 1996	5.3	15			0.6	0.8		5.4	1.8 Acetone	NA
	Feb/Mar 1997	7.9	19			0.8	0.8		7.8		NA
	Jun/Jul 1997	4.0	5.7				0.5		3.4		51
	Sep/Oct 1997	4.0	8.0	0.5	0.6		0.5		3.5		34
	Jan/Feb 1998	1.9	2.7	0.6					1.8		30
	Apr/May 1998	2.8	4.3	0.7	0.5				3.1		41

SUMMARY OF VOLATILE ORGANIC COMPOUNDS AND PERCHLORATE DETECTED DURING THE LONG-TERM QUARTERLY GROUNDWATER SAMPLING PROGRAM, JET PROPULSION LABORATORY

(concentrations in µg/L)

Sampling Location	Sampling Event	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Total Trihalomethanes (Primarily Chloroform)	Other Volatile Organic Compounds	Perchiorate
	Jul/Aug 1998	1.5	3.0	0.8	0.5				2.0		29
	Oct/Nov 1998	0.9	2.4	0.7					1.6		25
	Feb/Mar 1999	1.2	4.1	0.6	0.5				2.5		38
Screen 3	Aug/Sep 1996					24				3.0(B) Acetone	NA
	Oct/Nov 1996									1.5 Acetone	NA
	Feb/Mar 1997										NA
	Jun/Jul 1997										
	Sep/Oct 1997										
	Jan/Feb 1998								••		
	Apr/May 1998	•••								•••	
	Jul/Aug 1998									1.0 Dichloromethane(b)	
	Oct/Nov 1998										
	Feb/Mar 1999	**						0.7(b)			
Screen 4	Aug/Sep 1996								-	3.9(B) Acetone	NA
	Oct/Nov 1996	••							No. to	1.6 Acetone	NA
	Feb/Mar 1997										NA
	Jun/Jul 1997							•••			
	Sep/Oct 1997	**									
	Jan/Feb 1998				••						
	Apr/May 1998										
	Jul/Aug 1998						**		44.40		
	Oct/Nov 1998								·	••	
	Feb/Mar 1999	••						0.6(b)		•••	
Screen 5	Oct/Nov 1996	***		**						1.9 Acetone	NA
	Aug/Sep 1996			,							NA
	Feb/Mar 1997								*-		NA
	Jun/Jul 1997										
	Sep/Oct 1997										
	Jan/Feb 1998									7.4 Hexane	
	Apr/May 1998										
	Jul/Aug 1998										
	Oct/Nov 1998										
	Feb/Mar 1999							0.6(b)			
MW-5	Aug/Sep 1996		**					••	••		NA
	Oct/Nov 1996										NA
	Feb/Mar 1997					·			••		NA
	Jun/Jul 1997						**		No.		
	Sep/Oct 1997		••						••		
	Jan/Feb 1998						••				4.2
	Apr/May 1998			·							
	Jul/Aug 1998					·				6.5 Dichloromethane(b)	

TABLE 3-4

(concentrations in $\mu g/L$)

Sampling Location	Sampling Event	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Total Trihalomethanes (Primarily Chloroform)	Other Volatile Organic Compounds	Perchlorate
	Oct/Nov 1998										
	Feb/Mar 1999										
MW-6	Aug/Sep 1996		••	**	**				1.3(TB)		NA
	Oct/Nov 1996				••						NA
	Feb/Mar 1997				0.8						NA
	Jun/Jul 1997			••							5.5
·	Sep/Oct 1997									 .	
	Jan/Feb 1998			2.0	1.0						
	Apr/May 1998		0.7	3.2	1.1		••		0.6		
	Jul/Aug 1998		0.6	2.5	0.8					7.6 Dichloromethane(b)	4.2
	Oct/Nov 1998			0.7							
	Feb/Mar 1999	••	0.8	3.8	1.0				0.6		
MW-7	Aug/Sep 1996	90	39	0.8		1.2	1.1	7.2	13(TB)		NA
	Oct/Nov 1996		27	1.3		0.8	2.3	7.7	14	4.3(B) 1,1-Difluoroethane 2.8(B) Acetone	NA
	Feb/Mar 1997	45	27	0.6		0.8	0.9	5.1	9.9		NA
	Jun/Jul 1997	39	23	0.7		0.87	1.0	4.1	11	10 Unknown	285
	Sep/Oct 1997	93	22	1.1		0.9	1.3	4.7	13		550
	Jan/Feb 1998	150	24	3.7		0.8	2.1	6.4	13		720
	Apr/May 1998		13	0.5				3.1	6.1	• • • • • • • • • • • • • • • • • • •	130
	Jul/Aug 1998	43	19	0.8		0.6	0.9	3.4	9.0	1.0 Dichloromethane(b)	190
	Oct/Nov 1998	51	18	0.9		0.7	1.1	3.0	9.8	3.4 Carbon disulfide	210
	Feb/Mar 1999	49	17	0.6			0.9	2.0	7.2		150
MW-8	Aug/Sep 1996	4.0	4.6						1.3		NA
	Oct/Nov 1996	2.8	2.2					0.6	0.6	1.7 Acetone	NA
	Feb/Mar 1997	1.5	4.5						1.3	1.1 Freon 11	NA
	I /I1 1007									1.9 Carbon disulfide	6.4
	Jun/Jul 1997 Sep/Oct 1997	3.2	3.6					**	 1.2	1.0 Freon 11	6.4 29
	Jan/Feb 1998	1.8	1.3	**					0.8	0.8 Freon 11	11
	Apr/May 1998		1.3						0.5	0.8 Preon 11	7.6
	Jul/Aug 1998		1.3						U.J	6.6 Dichloromethane(b)	7.0
	Oct/Nov 1998									o.o Diemoromeniane(-)	
	Feb/Mar 1999									**	
MW-9	Aug/Sep 1996								••		NA
	Oct/Nov 1996										NA
	Feb/Mar 1997										NA
	Jun/Jul 1997		••								
	Sep/Oct 1997		••	**							
	Jan/Feb 1998								••	3.9 Unknown RT=6.21	
	Apr/May 1998	3									

SUMMARY OF VOLATILE ORGANIC COMPOUNDS AND PERCHLORATE DETECTED DURING THE LONG-TERM QUARTERLY GROUNDWATER SAMPLING PROGRAM, JET PROPULSION LABORATORY

(concentrations in µg/L)

Sampling Location	Sampling Event	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Total Trihalomethanes (Primarily Chloroform)	Other Volatile Organic Compounds	Perchlorate
	Jul/Aug 1998						**				
	Oct/Nov 1998					••					
	Feb/Mar 1999							••	••		**
MW-10	Aug/Sep 1996	* - 0.7	18	0.5				1.2	1.4(TB)		NA
10	Oct/Nov 1996	0.6	6.6	1.0	1.9			0.8	1.1	3.0(B) Acetone 1.1 Unknown scan #350	NA
	Feb/Mar 1997		5.2						0.6		NA
	Jun/Jul 1997		2.2			***					11
	Sep/Oct 1997		4.3	1.3	1.2				1.0	•••	16
	Jan/Feb 1998		1.1	2.2	1.6			,	1.4		4.7
	Apr/May 1998	••					••				
	Jul/Aug 1998									8.2 Dichloromethane(b)	
	Oct/Nov 1998										
	Feb/Mar 1999		5.7				. 		0.9		39
MW-11	100/1144 1777										
Screen 1	Aug/Sep 1996		**					**	**************************************	2.6(B) Acetone 7.1 MTBE	NA
	Oct/Nov 1996		••	••						1.8 Acetone	NA
	Feb/Mar 1997										NA
	Jun/Jul 1997	1.4									
	Sep/Oct 1997								**	••	
	Jan/Feb 1998										
	Apr/May 1998					••					
	Jul/Aug 1998	1.5				***					
	Oct/Nov 1998										
	Feb/Mar 1999							0.9(b)			••
Screen 2	Aug/Sep 1996								1.0		NA
Screen 2	Oct/Nov 1996	1.1					••		1.2	5 6	NA
	Feb/Mar 1997	1.7							1.0	**	NA
	Jun/Jul 1997	1.2							1.0	**	
	Sep/Oct 1997	0.6							0.6		
	Jan/Feb 1998	0.7							0.7		
	Apr/May 1998		-						0.7		••
	Jul/Aug 1998								0.6		••
	Oct/Nov 1998								0.7		
	Feb/Mar 1999							0.7(b)	1.1		
C 2								0.7(°)	1.3	2.9(B) Acetone	NA NA
Screen 3	Aug/Sep 1996 Oct/Nov 1996	0.9							1.3	2.7(D) Accione	NA NA
						**			1.1		NA NA
	Feb/Mar 1997			••					1.4		14/1
	Jun/Jul 1997	0.7							1.4		
	Sep/Oct 1997	0.6							1.3		

SUMMARY OF VOLATILE ORGANIC COMPOUNDS AND PERCHLORATE DETECTED DURING THE LONG-TERM QUARTERLY GROUNDWATER SAMPLING PROGRAM, JET PROPULSION LABORATORY

(concentrations in $\mu g/L$)

Sampling Location	Sampling Event	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Total Trihalomethanes (Primarily Chloroform)	Other Volatile Organic Compounds	Perchlora
	Jan/Feb 1998								1.4		
	Apr/May 1998	1.0							1.3		
	Jul/Aug 1998	1.5			·				1.4		
	Oct/Nov 1998	1.3							1.1		
	Feb/Mar 1999							0.7(b)			
Screen 4	Aug/Sep 1996				•-			**	0.5	2.4(B) Acetone	NA
	Oct/Nov 1996										NA
	Feb/Mar 1997		••							1.5 2-Methyl-1-Propene	NA
	Jun/Jul 1997										
	Sep/Oct 1997			-							
	Jan/Feb 1998								0.5		
	Apr/May 1998	••							0.5		
	Jul/Aug 1998							***	0.5		
	Oct/Nov 1998								0.6	·	
	Feb/Mar 1999							0.7(b)			
Screen 5	Aug/Sep 1996	••					-		'	2.4(B) Acetone	NA
	Oct/Nov 1996									1.1 Acetone	NA
	Feb/Mar 1997								••		NA
	Jun/Jul 1997										
	Sep/Oct 1997		••							. 	
	Jan/Feb 1998									44 Carbon disulfide(4)	
	Apr/May 1998										
	Jul/Aug 1998										
	Oct/Nov 1998										
	Feb/Mar 1999		••					0.7(b)			**
fW-12											
Screen 1	Aug/Sep 1996								4.1		NA
	Oct/Nov 1996	Not Sampled*							< <		
	Feb/Mar 1997								5.8		NA
	Jun/Jul 1997								0.5		
	Sep/Oct 1997	Not Sampled*									
	Jan/Feb 1998								0.8		
	Apr/May 1998										
	Jul/Aug 1998	••			••						
	Oct/Nov 1998	·					••				**
	Feb/Mar 1999								**	••	
Screen 2	Aug/Sep 1996								••	••	NA
	Oct/Nov 1996	1.5	0.6					0.5			NA
	Feb/Mar 1997		0.5	••						1.1(B) Acetone	NA
	Jun/Jul 1997	1.0					·	'	0.8		6.9
	Sep/Oct 1997					••	••		0.8		5.8

SUMMARY OF VOLATILE ORGANIC COMPOUNDS AND PERCHLORATE DETECTED DURING THE LONG-TERM QUARTERLY GROUNDWATER SAMPLING PROGRAM, JET PROPULSION LABORATORY

(concentrations in µg/L)

Sampling Location	Sampling Event	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Total Trihalomethanes (Primarily Chloroform)	Other Volatile Organic Compounds	Perchlorate
	Jan/Feb 1998	1.1	••						0.6	••	6.3
	Apr/May 1998								0.9		6.0
	Jul/Aug 1998	1.4							0.9		5.1
	Oct/Nov 1998	1.3							1.0		4.2
	Feb/Mar 1999	1.3							0.9		4.1
Screen 3	Aug/Sep 1996	4.5	**						1.3		NA
	Oct/Nov 1996	3.8							1.3	1.6 Acetone	NA
	Feb/Mar 1997	6.4							1.4	1.3(B) Acetone	NA
	Jun/Jul 1997	20							1.6		5.7
	Sep/Oct 1997	14							1.7	·	6.2
	Jan/Feb 1998	23E							2.3		5.9
	Apr/May 1998	25							2.0		6.9
	Jul/Aug 1998	35							2.2		6.6
	Oct/Nov 1998	27							2.2		6.9
	Feb/Mar 1999	23									••
Screen 4	Aug/Sep 1996	6.3	***						1.4	**	NA
	Oct/Nov 1996	5.1		,					1.4	2.5 Acetone	NA
	Feb/Mar 1997	4.9							1.3		NA
	Jun/Jul 1997	4.9						1.3		7.3	
	Sep/Oct 1997	3.8							1.0		7.6
	Jan/Feb 1998	4.0							1.1		8.0
	Apr/May 1998								1.2		8.0
	Jul/Aug 1998	5.1					·		1.2		6.0
	Oct/Nov 1998	4.1							1.2		7.7
	Feb/Mar 1999	4.5	 ,						1.2		7.0
Screen 5	Aug/Sep 1996	3.4							0.7		NA
	Oct/Nov 1996							••		1.5 Acetone	NA
	Feb/Mar 1997	1.7							0.5		NA
	Jun/Jul 1997	1.9	••						0.5		4.1
	Sep/Oct 1997	1.3									
	Jan/Feb 1998	1.3									
	Apr/May 1998	1.7							0.6		
	Jul/Aug 1998	2.1	•••						0.6		
	Oct/Nov 1998	2.0							0.6		
	Feb/Mar 1999	1.3				••			0.7		
MW-13	Aug/Sep 1996	21	47	0.6		2.5	1.5	0.7	21(TB)		NA
	Oct/Nov 1996	27	27			1.9	1.5	0.6	14		NA
	Feb/Mar 1997		28			-0.9	1.1	0.6	9.2		NA
	Jun/Jul 1997	6.4	24 E			0.9	0.5		11		130
	Sep/Oct 1997	8.2	19			1.1	0.5		10		210
	Jan/Feb 1998		5.2	0.5			$0.5 (DUP^{3})$		2.9	1.8 Freon 11	99

SUMMARY OF VOLATILE ORGANIC COMPOUNDS AND PERCHLORATE DETECTED DURING THE LONG-TERM QUARTERLY GROUNDWATER SAMPLING PROGRAM, JET PROPULSION LABORATORY

(concentrations in $\mu g/L$)

Sampling Location	Sampling Event	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Total Trihalomethanes (Primarily Chloroform)	Other Volatile Organic Compounds	Perchlorate
	Apr/May 1998	13	17	0.6			0.9	0.6	5.7		100
	Jul/Aug 1998	15	29	0.6			1.2	0.7	7.7	1.0 Dichloromethane(b) 0.5 1,1,1-Trichloroethane	59
	Oct/Nov 1998	9.01	20				1.1	0.5	9.3	0.5 1,1,1-111cmoroeurane	86
	Feb/Mar 1999	9.4	28			0.7	0.7	11	y,,y		86 98
(W-14	100/11/14 1999						<u> </u>				, ,, ,, ,, ,
Screen 1	Aug/Sep 1996				2.4				0.6		NA
50.00	Oct/Nov 1996				2.9				·		NA
	Feb/Mar 1997			0.7	1.5				0.7		NA
	Jun/Jul 1997				2.0					~ ~	
	Sep/Oct 1997				1.9						
	Jan/Feb 1998				2.1				0.5		
	Apr/May 1998			1.2	0.8				0.8		4.4
	Jul/Aug 1998			0.8	1.7				0.6		4.4
	Oct/Nov 1998			0.5	2.4				Q.6		4.2
	Feb/Mar 1999	••		0.8	1.2			0.6(b)	0.6		4.2
Screen 2	Aug/Sep 1996		2.8	1.6	1.4				1.5	0.6122 T.: 11 - 1	NA
	Oct/Nov 1996	•••	1.5	1.6	1.0				0.9	0.6 1,2,3-Trichlorobenzene 1.1 Acetone 0.8 1,2,3-Trichlorobenzene	NA
	Feb/Mar 1997		0.9	1.9	1.3				0.8	1.1 Acetone	NA
	Jun/Jul 1997		1.1	1.7	1.5				0.9	0.5 1,2,3-Trichlorobenzene	
	Sep/Oct 1997		1.2	1.9	1.6				0.8		
	Jan/Feb 1998			1.2	0.7				••	8.9 Carbon disulfide(4)	9.0
	Apr/May 1998			1.2	0.7				0.6		4.0
	Jul/Aug 1998	••	0.9	1.8	0.8				0.6		4.9
	Oct/Nov 1998		0.6	1.5	0.7				0.5		4.2
	Feb/Mar 1999		0.9	1.6	0.7			0.6(b)	Ó.6		4.2
Screen 3	Aug/Sep 1996		**							••	NA
	Oct/Nov 1996			••							NA
	Feb/Mar 1997										NA
	Jun/Jul 1997										4.3
	Sep/Oct 1997										
	Jan/Feb 1998										5.6
	Apr/May 1998										5.8
	Jul/Aug 1998								••		5.9
	Oct/Nov 1998										6.7
	Feb/Mar 1999			0.5	••			0.6(b)	0.5	20	5.9

SUMMARY OF VOLATILE ORGANIC COMPOUNDS AND PERCHLORATE DETECTED DURING THE LONG-TERM QUARTERLY GROUNDWATER SAMPLING PROGRAM, JET PROPULSION LABORATORY

(concentrations in µg/L)

Sampling Location	Sampling Event	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Total Trihalomethanes (Primarily Chloroform)	Other Volatile Organic Compounds	Perchlorate
Screen 4	Aug/Sep 1996			**							NA.
	Oct/Nov 1996	••									NA
	Feb/Mar 1997										NA
	Jun/Jul 1997			***							
	Sep/Oct 1997						~~				
	Jan/Feb 1998			**							
	Apr/May 1998										
	Jul/Aug 1998										
	Oct/Nov 1998										
	Feb/Mar 1999							0.6(b)			
Screen 5	Aug/Sep 1996									2.1(B) Acetone	NA
	Oct/Nov 1996									1.6(TB) Acetone	NA
										1.3 Carbon disulfide	NA
	Feb/Mar 1997										NA
	Jun/Jul 1997			***							
	Sep/Oct 1997										
	Jan/Feb 1998		••							4.6 Carbon disulfide(4)	
	Apr/May 1998										,
	Jul/Aug 1998										
	Oct/Nov 1998								 .		
	Feb/Mar 1999										••
MW-15	Aug/Sep 1996								**		NA
1,1,7, 15	Oct/Nov 1996	••								2.6 Acetone	NA
	Feb/Mar 1997	**									NA
	Jun/Jul 1997										
	Sep/Oct 1997										
	Jan/Feb 1998										
	Apr/May 1998										
	Jul/Aug 1998								•-		
	Oct/Nov 1998	••									
	Feb/Mar 1999										
MW-16	Aug/Sep 1996	125	33	1.3		2.4	2.2	2.0	40(TB)		NA
171 77 -1 U	Oct/Nov 1996			1.3		2.7	2.2	2.0	TU(1D)		14/4
	Feb/Mar 1997		-23	1.3		1.7	2.6	1.6	29		NA
	Jun/Jul 1997	68	25	1.1		2.1	1.7	0.6	43		615
	Sep/Oct 1997	Not Sampled*	.2.3	1.1		2.1	1.,	0.0	73	•	Annual Control
	Jan/Feb 1998	30	3.5	1.0			1.3		14		1230
	Apr/May 1998		3.3 12	0.8		1.4	1.6	1.2	20		640
	Jul/Aug 1998		19	1.3		0.8	2.7	1.2	23	0.6 Dichloromethane(b)	420

TABLE 3-4

(concentrations in $\mu g/L$)

Sampling Location	Sampling Event	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Total Trihalomethanes (Primarily Chloroform)	Other Volatile Organic Compounds	Perchlorate
	Óct/Nov 1998	51	18.3	1.0		1.5	1.6	1.4	29	1.0 1,1,1-Trichloroethane 1.1 1,1,1-Trichloroethane	- 220
	Feb/Mar 1999	67	20	1.4		1.1	1.8	1.1	24	13 Carbon disulfide	790
MW-17											
Screen 1	Aug/Sep 1996								**	4.3(B) Acetone	NA
	Oct/Nov 1996								**	1.4 Acetone	NA
	Feb/Mar 1997					**				 ·	NA
	Jun/Jul 1997										
	Sep/Oct 1997	••		••							
	Jan/Feb 1998								2.9	**	
	Apr/May 1998								3.2		
	Jul/Aug 1998										
	Oct/Nov 1998										
-	Feb/Mar 1999										
Screen 2	Aug/Sep 1996		**			•-			3.8	4.5(B) Acetone	NA
	Oct/Nov 1996								6.0		NA
	Feb/Mar 1997					••			5.2		NA
	Jun/Jul 1997	••							4.1		
	Sep/Oct 1997					••			6.1	·	
	Jan/Feb 1998	'							5.4		
	Apr/May 1998								3.2		
	Jul/Aug 1998					••			2.4		
	Oct/Nov 1998	'					••		3.7		
	Feb/Mar 1999		;				**	1.0(b)	3.9		
Screen 3	Aug/Sep 1996	2.0	-7.9						7.5		NA
	Oct/Nov 1996		18	0.8					8.7		NA
	Feb/Mar 1997	5.1	23	1.1	**				6.2		NA
	Jun/Jul 1997	1.3	5.9						8.2		12
	Sep/Oct 1997	6.6	22	1.4		•			9.2		55
	Jan/Feb 1998	3.3	8.7						6.8		25
	Apr/May 1998		0.9						5.3		
	Jul/Aug 1998	••	1.0						4.9	-+	
	Oct/Nov 1998		1.9			-			4.1		5.1
	Feb/Mar 1999		1.6						3.8		4.2
Screen 4	Aug/Sep 1996		9.5	0.5		4.5			1.1		NA
	Oct/Nov 1996		8.9	••					1.5		NA
	Feb/Mar 1997		5.8 👑						0.7		NA
	Jun/Jul 1997		4.5						0.6		13
	Sep/Oct 1997		6.8	0.5					1.0		16
	Jan/Feb 1998		7.3	0.6					1.2		16

SUMMARY OF VOLATILE ORGANIC COMPOUNDS AND PERCHLORATE DETECTED DURING THE LONG-TERM QUARTERLY GROUNDWATER SAMPLING PROGRAM, JET PROPULSION LABORATORY

(concentrations in µg/L)

Sampling Location	Sampling Event	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Total Trihalomethanes (Primarily Chloroform)	Other Volatile Organic Compounds	Perchlorate
	Apr/May 1998		7.6	0.6		**	**		1.5	••	17
	Jul/Aug 1998		8.9	0.6					1.9		14
	Oct/Nov 1998		6.2	0.5					1.9		12
	Feb/Mar 1999	••	3.8					1.0(b)	1.8		9.8
Screen 5	Aug/Sep 1996		13	0.6			+-		1.7	3.4(B) Acetone	NA
	Oct/Nov 1996		16	0.7					1.7	` 	NA
	Feb/Mar 1997		14	0.7		**			1.3		NA
	Jun/Jul 1997		11	0.7					1.3		12
	Sep/Oct 1997		8.6	0.6					1.4		15
	Jan/Feb 1998		7.9						1.5		15
	Apr/May 1998		8.8	0.6					1.8		15
	Jul/Aug 1998		8.9	0.6					2.0		13
	Oct/Nov 1998		- 11	0.8					2.7		12
	Feb/Mar 1999		4.9	•••			**		2.1	 .	6.4
MW-18											
Screen 1	Aug/Sep 1996								1.6		NA
	Oct/Nov 1996	Not Sampled*									
	Feb/Mar 1997						**		3.0		NA
	Jun/Jul 1997								0.8		
	Sep/Oct 1997	Not Sampled*									
	Jan/Feb 1998	Not Sampled*									
	Apr/May 1998								0.7		
	Jul/Aug 1998									3.4 Unknown Hydrocarbon (RT=7.14)	
	Oct/Nov 1998									·	
	Feb/Mar 1999										
Screen 2	Aug/Sep 1996								7.3		NA
	Oct/Nov 1996								8.2		NA
	Feb/Mar 1997								1.9	••	NA
	Jun/Jul 1997								4.5		
	Sep/Oct 1997					••			2.5		
•	Jan/Feb 1998				,	***			3.7		
	Apr/May 1998								3.2		
	Jul/Aug 1998					••			0.9		
	Oct/Nov 1998	·									
	Feb/Mar 1999								3.0	0.8 Bromodichloromethane	
Screen 3	Aug/Sep 1996		4.7	2.8					5.1		NA
	Oct/Nov 1996		6.4	3.2					5.6		NA
	Feb/Mar 1997		6.6	2.9					5.1		NA
	Jun/Jul 1997	0.6	2.4	1.8					4.4		
	Sep/Oct 1997		3.0	1.9					6.2		

TABLE 3-4

(concentrations in µg/L)

Sampling Location	Sampling Event	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Total Trihalomethanes (Primarily Chloroform)	Other Volatile Organic Compounds	Perchlorate
	Jan/Feb 1998		1.9	1.7				***	6.6	4.1 Unknown (RT=4.33)	
	Apr/May 1998	0.5	1.8	1.3					5.7		5.0
	Jul/Aug 1998		1.5	0.9					4.6		5.2
	Oct/Nov 1998		1.4	0.8					4.2		
	Feb/Mar 1999		1.0	0.5					3.5		
Screen 4	Aug/Sep 1996	2.2	**	0.7			**		0.5		NA
	Oct/Nov 1996	2.2		0.7					0.5	1.4(TB) Acetone	NA
	Feb/Mar 1997	2.2		1.5					0.6		NA
	Jun/Jul 1997	1.9	••	0.7							11
	Sep/Oct 1997	2.4		0.7						1.5 Carbon Disulfide	12
	Jan/Feb 1998	2.6		1.0					0.5		11
	Apr/May 1998	3.1	0.6	1.4					0.8		13
	Jul/Aug 1998	2.5	0.6	1.2					0.6		16
	Oct/Nov 1998	3.4	8.0	1.5					0.7		. 19
	Feb/Mar 1999	4.7	1.2	2.3					1.1		24
Screen 5	Aug/Sep 1996								, 		NA
	Oct/Nov 1996									1.6 Acetone	NA
	Feb/Mar 1997	***	••								NA
	Jun/Jul 1997									1.1 Carbon disulfide	
	Sep/Oct 1997				**						
	Jan/Feb 1998								••		
	Apr/May 1998									 4 C XX	
	Jul/Aug 1998									4.6 Hexane	
	Oct/Nov 1998 Feb/Mar 1999										
	red/Mar 1999					**			**		
MW-19	10 1001										
Screen 1	Aug/Sep 1996		**						0.9	3.7(B) Acetone	NA
	Oct/Nov 1996								0.6	2.9 Acetone	NA
	Feb/Mar 1997	***							0.8		NA
	Jun/Jul 1997								2.5		
	Sep/Oct 1997								1.4		
	Jan/Feb 1998								0.8	•-	
	Apr/May 1998										
	Jul/Aug 1998										
	Oct/Nov 1998										
G 2	Feb/Mar 1999									2.0(D)	
Screen 2	Aug/Sep 1996			0.8						3.0(B) Acetone	NA
	Oct/Nov 1996			1.1							NA
	Feb/Mar 1997			0.6							NA
	Jun/Jul 1997		**	0.6							
	Sep/Oct 1997							*=			

TABLE 3-4

(concentrations in $\mu g/L$) Values above state and/or Federal MCLs or action levels are bold and shaded

Sampling Location	Sampling Event	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Total Trihalomethanes (Primarily Chloroform)	Other Volatile Organic Compounds	Perchlorate
	Jan/Feb 1998		0.6	0.9							
	Apr/May 1998		0.9	1.2							
	Jul/Aug 1998		0.6	0.7							
	Oct/Nov 1998									Compounds 	
	Feb/Mar 1999		0.6							· •••	
Screen 3	Aug/Sep 1996			3.1						2.6(B) Acetone	NA
	Oct/Nov 1996			2.5				, 			NA
	Feb/Mar 1997			2.1							NA
	Jun/Jul 1997			2.0				••			4.1
	Sep/Oct 1997			1.5					••	0.6 Toluene	
	Jan/Feb 1998			2.1							
	Apr/May 1998			2.5							
	Jul/Aug 1998			2.1							4.4
	Oct/Nov 1998			2.0					••		4.2
	Feb/Mar 1999			1.5					••	•••	
Screen 4	Aug/Sep 1996	0.5	1.5						2.1		NA
	Oct/Nov 1996		1.5						1.9		NA
	Feb/Mar 1997		1.1	0.6					1.5		NA
	Jun/Jul 1997		0.7						1.3		
	Sep/Oct 1997		0.7	0.6					1.7	.	4.9
	Jan/Feb 1998		0.5	0.6					1.3		
	Apr/May 1998	••	0.8	1.0					1.6		
	Jul/Aug 1998	••							1.4		
	Oct/Nov 1998								2.2		
	Feb/Mar 1999								3.0		
Screen 5	Aug/Sep 1996			3.0					0.6	1.6(B) Unknown scan #940	NA
	Oct/Nov 1996			2.4					•••		NA
	Feb/Mar 1997			1.7							NA
	Jun/Jul 1997			1.5		. ••					••
	Sep/Oct 1997			2.2					0.8		
	Jan/Feb 1998			1.4			**		**		
	Apr/May 1998		••	0.9					0.6		
	Jul/Aug 1998			1.5							
	Oct/Nov 1998			1.5							
	Feb/Mar 1999	·		1.3							
1W-20											
Screen 1	Aug/Sep 1996								0.7	3.4(B) Acetone	NA
	Oct/Nov 1996										
	Feb/Mar 1997	·							1.4	2.4(EB) Acetone	NA
	Jun/Jul 1997								0.8		5.7
	Sep/Oct 1997	Not Sampled*									

SUMMARY OF VOLATILE ORGANIC COMPOUNDS AND PERCHLORATE DETECTED DURING THE LONG-TERM QUARTERLY GROUNDWATER SAMPLING PROGRAM, JET PROPULSION LABORATORY

(concentrations in $\mu g/L$)

Sampling Location	Sampling Event	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Total Trihalomethanes (Primarily Chloroform)	Other Volatile Organic Compounds	Perchlorate
	Jan/Feb 1998								1.4		6.3
	Apr/May 1998			••					2.5		5.5
	Jul/Aug 1998								1.8		5.9
	Oct/Nov 1998	••							0.8		7.8
	Feb/Mar 1999								2.2		4.9
Screen 2	Aug/Sep 1996				**	**			7.7	4.0(B) Acetone	NA
	Oct/Nov 1996		••						4.4		NA
	Feb/Mar 1997	**							3.2		NA
	Jun/Jul 1997								3.3		 ,
	Sep/Oct 1997								5.7		
	Jan/Feb 1998								2.7		
	Apr/May 1998								2.7		
	Jul/Aug 1998								4.2	0.5 Dichlorobromomethane	
	Oct/Nov 1998								3.6		
	Feb/Mar 1999								4.2		
Screen 3	Aug/Sep 1996		-						••	2.7(B) Acetone	NA
	Oct/Nov 1996						,		0.6	2.3 Acetone	NA
	Feb/Mar 1997										NA
	Jun/Jul 1997	. 								<i></i>	
	Sep/Oct 1997			••						. 	
	Jan/Feb 1998							•••		3.4 Unknown (RT=6.2)	
	Apr/May 1998									~ →	
	Jul/Aug 1998										
	Oct/Nov 1998										
	Feb/Mar 1999		••						••	<u></u>	
Screen 4	Aug/Sep 1996								•	3.8(B) Acetone	NA
	Oct/Nov 1996								**		NA
	Feb/Mar 1997										NA
	Jun/Jul 1997										
	Sep/Oct 1997										
	Jan/Feb 1998								••		
	Apr/May 1998										21
	Jul/Aug 1998								••		
	Oct/Nov 1998										20
	Feb/Mar 1999										
Screen 5	Aug/Sep 1996				••				**	4.8(B) Acetone	NA
	Oct/Nov 1996										NA
÷	Feb/Mar 1997	**									NA
	Jun/Jul 1997				••				••		
	Sep/Oct 1997			••			••		••		
	Jan/Feb 1998								••		

SUMMARY OF VOLATILE ORGANIC COMPOUNDS AND PERCHLORATE DETECTED DURING THE LONG-TERM QUARTERLY GROUNDWATER SAMPLING PROGRAM, JET PROPULSION LABORATORY

(concentrations in µg/L)

Sampling Location	Sampling Event	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Total Trihalomethanes (Primarily Chloroform)	Other Volatile Organic Compounds	Perchlorate
	Apr/May 1998	••								***	21
	Jul/Aug 1998										
	Oct/Nov 1998										8.2
	Feb/Mar 1999										
MW-21											
Screen 1	Aug/Sep 1996	••	33	0.7					1.8	2.3(B) Acetone	NA
	Oct/Nov 1996	Not Sampled*		_							
	Feb/Mar 1997		29					-	2.2		NA
	Jun/Jul 1997		20				••		1.6		19
	Sep/Oct 1997	Not Sampled*		_							
	Jan/Feb 1998		16						1.8	**	14
	Apr/May 1998		16						1.8	·	14
	Jul/Aug 1998		16	0.6					1.8		13
	Oct/Nov 1998		10						1.6		13
	Feb/Mar 1999		20	0.5					1.8		14
Screen 2	Aug/Sep 1996			0.9					0.5		NA
	Oct/Nov 1996		0.6	2.3					0.6	1.4(TB) Acetone	NA
	Feb/Mar 1997			1.1							NA
	Jun/Jul 1997			0.7							
	Sep/Oct 1997									•	
	Jan/Feb 1998			1.1							
	Apr/May 1998			1.0							
	Jul/Aug 1998			0.7					0.7		
	Oct/Nov 1998								0.7		
	Feb/Mar 1999			0.8							4.1
Screen 3	Aug/Sep 1996		0.7	1.5					0.5		NA
	Oct/Nov 1996		0.9	1.6						1.2 Acetone	NA
	Feb/Mar 1997		0.8	1.6							NA
	Jun/Jul 1997			1.2							
	Sep/Oct 1997		0.6	1.3							
	Jan/Feb 1998		0.5	1.4							
	Apr/May 1998			1.1		•-					
	Jul/Aug 1998			0.9							
	Oct/Nov 1998			0.8							
	Feb/Mar 1999	•		1.0							4.1
Screen 4	Aug/Sep 1996		0.8	4.2						••	NA
	Oct/Nov 1996		***	2.5						1.6 Acetone	NA
	Feb/Mar 1997			1.8					**		NA
	Jun/Jul 1997			2.8					••		4.6
	Sep/Oct 1997		0.6	4.4							7.7
	Jan/Feb 1998		-	2.4							

TABLE 3-4

(concentrations in µg/L)

Sampling Location	Sampling Event	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Total Trihalomethanes (Primarily Chloroform)	Other Volatile Organic Compounds	Perchlorate
	Apr/May 1998		0.6	4.4						0.7 cis-1,2-Dichloroethene	
	Jul/Aug 1998		0.8	4.3						0.8 cis-1,2-Dichloroethene	4.3
	Oct/Nov 1998		1.1	8.3					0.6	1.3 cis-1,2-Dichloroethene	
	Feb/Mar 1999			3.8					••	0.7 cis-1,2-Dichloroethene	
Screen 5	Aug/Sep 1996			4.5	,				0.6		NA
	Oct/Nov 1996			3.1		•					NA
	Feb/Mar 1997			3.0					••		NA
	Jun/Jul 1997			3.0							
	Sep/Oct 1997			2.9					••		
	Jan/Feb 1998	••		4.1						0.6 cis-1,2-Dichloroethene 5.0 Carbon disulfide ⁽⁴⁾	5.2
	Apr/May 1998			6.5						1.0 cis-1,2-Dichloroethene	5.8
	Jul/Aug 1998			7.6					0.6	1.5 cis-1,2-Dichloroethene	
	Oct/Nov 1998			6.7		••			0.6	1.4 cis-1,2-Dichloroethene	4.0
	Feb/Mar 1999		0.5	7.7			••		0.7	1.4 cis-1,2-Dichloroethene	4.2
MW-22(1)								·			
Screen 1	Sep/Oct 1997			2.0	0.7						
	Jan/Feb 1998			2.3	0.8			0.5	**		
	Apr/May 1998		0.9	2.1	0.8				0.5		5.4
	Jul/Aug 1998		0.9	1.7	0.6					·	6.4
	Oct/Nov 1998			1.7	0.7						5.0
	Feb/Mar 1999	. 	0.6	3.6	1.0			1.3(b)	0.5		6.4
Screen 2	Sep/Oct 1997									0.8 Dichloromethane	
	Jan/Feb 1998										
	Apr/May 1998			•							
	Jul/Aug 1998										4.9
	Oct/Nov 1998									•	
	Feb/Mar 1999		0.6					1.4(b)	••		
Screen 3	Sep/Oct 1997										15
	Jan/Feb 1998									· - 1-	
	Apr/May 1998									<u>-</u> ÷, .	
	Jul/Aug 1998										
	Oct/Nov 1998										
	Feb/Mar 1999							1.3(b)			
Screen 4	Sep/Oct 1997							**			
	Jan/Feb 1998										
	Apr/May 1998									**	
	Jul/Aug 1998										
	Oct/Nov 1998				••						
	Feb/Mar 1999				-			1.3(b)			

TABLE 3-4

(concentrations in $\mu g/L$)

Sampling Location	Sampling Event	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Total Trihalomethanes (Primarily Chloroform)	Other Volatile Organic Compounds	Perchlorate
Screen 5	Sep/Oct 1997								==		
	Jan/Feb 1998								**		
	Apr/May 1998										
	Jul/Aug 1998										
	Oct/Nov 1998							***			
	Feb/Mar 1999	••						1.3(b)			
MW-23(1)											
Screen 1	Sep/Oct 1997		3.1	0.6	0.8				••		4.4
	Jan/Feb 1998		4.2	1.6	1.2				0.9	0.6 1,2,3-Trichlorobenzene	5.2
	Apr/May 1998	0.5	16	0.8	1.2				1.9		16
	Jul/Aug 1998	0.5	9.2		***				1.0	2.2 Dichloromethane(b)	19
	Oct/Nov 1998	0.8	15						1.9		21
	Feb/Mar 1999	0.6	15	1.1			1.4	·	1.9	0.06 1,2,3-Trichlorobenzene	8.4
Screen 2	Sep/Oct 1997							••	40		7.6
	Jan/Feb 1998								0.7		6.7
	Apr/May 1998										7.5
	Jul/Aug 1998		1.1	1.0	0.8			•••	0.7	1.8 Dichloromethane(b)	7.8
	Oct/Nov 1998		0.6	0.7	0.6				0.6		16
	Feb/Mar 1999								0.5		7.7
Screen 3	Sep/Oct 1997								••		
	Jan/Feb 1998				·						
	Apr/May 1998										
	Jul/Aug 1998									1.7 Dichloromethane(b)	
	Oct/Nov 1998	••									
	Feb/Mar 1999		••						 ,		
Screen 4	Sep/Oct 1997								••		
	Jan/Feb 1998										
	Apr/May 1998										
	Jul/Aug 1998					•				2.3 Dichloromethane(b)	
	Oct/Nov 1998										
	Feb/Mar 1999								•••		
Screen 5	Sep/Oct 1997		••	••							
	Jan/Feb 1998		••								
	Apr/May 1998										
	Jul/Aug 1998									1.7 Dichloromethane(b)	
	_									3.0 Unknown (RT=3.93)	
	Oct/Nov 1998								**	3.1 2-Methyl-1-propene	17
	Feb/Mar 1999										

TABLE 3-4

(concentrations in $\mu g/L$)

Sampling Location	Sampling Event	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1-DCE	Freon 113	Total Trihalomethanes (Primarily Chloroform)	Other Volatile Organic Compounds	Perchlorate
MW-24(1)											
Screen 1	Sep/Oct 1997	5.0	5.0					0.6	3.1		- 92
	Jan/Feb 1998	30E	15	0.5		0.8		0.6	15		330
	Apr/May 1998	6.7	5.4				·		3.3		74
	Jul/Aug 1998		1.7						0.9		20
	Oct/Nov 1998	1.0	1.3						0.8		16
	Feb/Mar 1999	1.0	1.5						0.8		14
Screen 2	Sep/Oct 1997	.13	1.3						3.8		200
	Jan/Feb 1998	6.9	0.7						2.4	••	110
	Apr/May 1998	29	3.3	0.9			1.4		9.4		480
	Jul/Aug 1998	58	4.0	1.5			2.0		8.4		500
	Oct/Nov 1998	19	2.3	0.8			0.8		5.9		490
	Feb/Mar 1999	30E	3.0	1.0			1.5		6.6		580
Screen 3	Sep/Oct 1997										
	Jan/Feb 1998	••									
	Apr/May 1998	~~									
	Jul/Aug 1998						••				
	Oct/Nov 1998										
	Feb/Mar 1999										
Screen 4	Sep/Oct 1997										
	Jan/Feb 1998										
	Apr/May 1998										
	Jul/Aug 1998										
	Oct/Nov 1998										
	Feb/Mar 1999			·							
Screen 5	Sep/Oct 1997										
	Jan/Feb 1998								••		
	Apr/May 1998										
	Jul/Aug 1998										
	Oct/Nov 1998										
	Feb/Mar 1999					***					

SUMMARY OF VOLATILE ORGANIC COMPOUNDS AND PERCHLORATE DETECTED DURING THE LONG-TERM QUARTERLY GROUNDWATER SAMPLING PROGRAM, JET PROPULSION LABORATORY

(concentrations in µg/L)

Sampling Location	Sampling Event	Carbon Tetrachloride	TCE	PCE	1,1-DCA	1,2-DCA	1,1 - DCE	Freon 113	Total Trihalomethanes (Primarily Chloroform)	Other Volatile Organic Compounds	Perchlorate
Practical Quanti	tation Limit	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	4.0
California Maxis		0.5	5.0	5.0	5.0	0.5	6.0	1,200	100	150 Freon 11(a) 6.0 cis-1,2-Dichloroethene(a) 1,1,1-Trichloroethane(a)	18(2)
EPA Region IX Contaminant		5.0	5.0	5.0	NE	5.0	7.0	NE	100	5.0 Dichloromethane(a) 70 cis-1,2-Dichloroethene(a) 100 Bromodichloromethane(a) 1,1,1-Trichloroethane(a)	NE

- --: Not detected
- *: Not sampled, no water over screen
- a: Only VOCs for which MCLs have been established are listed
- b: Attributed to Laboratory Contamination
- TB: Compound detected in associated trip blank
- B: Compound detected in the laboratory method blank
- E: Estimated concentration; result exceeded calibration range

- NA: Not analyzed
- NE: Not established
- RT: Retention time
- 1: Wells installed June-August 1997
- 2: California Department of Health Services Interim Action Level
- 3: DUP Results from duplicate analysis; original sample was non-detect.
- 4: Suspected by the laboratory to have resulted from carry over in analysis (see January/February 1998 report)

TABLE 3-5

RESULTS OF METALS ANALYSIS OF GROUNDWATER SAMPLES COLLECTED FROM JPL MONITORING WELLS, FEBRUARY-MARCH 1999

(concentrations in mg/L)

Sample Location	Sample Number	Arsenic	Lead	Total Chromium	Hexavalent Chromium	Field Turbidity (NTUs)
MW-1	MW-991-079					1.99
MW-3						
Screen 1	MW-991-078					4.73
Screen 2	MW-991-077	an an				2.15
Screen 3	MW-991-076					3.18
Screen 4	MW-991-075					3.53
Screen 5	MW-991-074					4.43
MW-4						
Screen 1	MW-991-073					0.98
Screen 2	MW-991-072					6.10
Screen 2 (DUP)	MW-991-071					6.10
Screen 3	MW-991-070					2.92
Screen 4	MW-991-069	40 69				3.33
Screen 5	MW-991-068					2.39
MW-5	MW-991-067					7.95
MW-6	MW-991-066			0.017		2.71
MW-7	MW-991-065					4.30
MW-8	MW-991-064					1.49
MW-9	MW-991-063					2.75
MW-10	MW-991-062			0.012		3.34
MW-10 DUP	MW-991-061			0.014	**	3.34
MW-11						
Screen 1	MW-991-060				##	1.64
Screen 2	MW-991-059					12.8
Screen 3	MW-991-058					2.63
Screen 4	MW-991-057					1.42
Screen 5	MW-991-056					4.13
MW-12						
Screen 1	MW-991-055					7.53
Screen 2	MW-991-054					2.45
Screen 2 (DUP)	MW-991-053					2.45
Screen 3	MW-991-052					4.62
Screen 4	MW-991-051	#- 			44 44	3.08
Screen 5	MW-991-050					5.03

TABLE 3-5

RESULTS OF METALS ANALYSIS OF GROUNDWATER SAMPLES COLLECTED FROM JPL MONITORING WELLS, FEBRUARY-MARCH 1999

(concentrations in mg/L)

Sample Location	Sample Number	Arsenic	Lead	Total Chromium	Hexavalent Chromium	Field Turbidity (NTUs)
MW-13	MW-991-049			0.027	0.018	1.0
MW-13 DUP	MW-991-048			0.030	0.019	1.0
MW-14						
Screen 1	MW-991-047		~			4.83
Screen 2	MW-991-046					4.72
Screen 3	MW-991-045					0.65
Screen 4	MW-991-044					2.08
Screen 5	MW-991-043					4.22
MW-15	MW-991-042					0.62
MW-16	MW-991-041			0.013	0.006	1.01
MW-17						
Screen 1	MW-991-040					1.54
Screen 2	MW-991-039				au es	1.08
Screen 3	MW-991-038		**	***		6.28
Screen 4	MW-991-037					4.78
Screen 5	MW-991-036		0.007			12.4
MW-18		<u> </u>				
Screen 1	MW-991-035					0.67
Screen 2	MW-991-034		0.005			2.71
Screen 3	MW-991-033		+-		0.007	1.19
Screen 4	MW-991-032					2.67
Screen 5	MW-991-031					1.98
MW-19						
Screen 1	MW-991-030					4.99
Screen 2	MW-991-029					3.94
Screen 3	MW-991-028					4.11
Screen 4	MW-991-027					4.38
Screen 5	MW-991-026					4.37
MW-20		E				
Screen 1	MW-991-025				·	0.51
Screen 2	MW-991-024				<u></u>	0.79
Screen 3	MW-991-023		0.010			0.10
Screen 4	MW-991-022	**				0.83
Screen 5	MW-991-021					1.02

RESULTS OF METALS ANALYSIS OF GROUNDWATER SAMPLES COLLECTED FROM JPL MONITORING WELLS, FEBRUARY-MARCH 1999

(concentrations in mg/L)

Values equal to or above state MCLs, (or other applicable regulatory limits), are bold and shaded

Sample Location	Sample Number	Arsenic	Lead	Total Chromium	Hexavalent Chromium	Field Turbidity (NTUs)
MW-21						
Screen 1	MW-991-020					0.27
Screen 2	MW-991-019					0.04
Screen 3	MW-991-018					4.16
Screen 4	MW-991-017					13.1
Screen 5	MW-991-016					4.29
MW-22						
Screen 1	MW-991-015					20.1
Screen 2	MW-991-014					8.10
Screen 3	MW-991-013					5.19
Screen 4	MW-991-012		04 AP			5.13
Screen 5	MW-991-011					2.63
MW-23						
Screen 1	MW-991-010					4.24
Screen 2	MW-991-009					2.53
Screen 3	MW-991-008			<u></u>		4.31
Screen 4	MW-991-007					5.07
Screen 5	MW-991-006					3.19
MW-24						
Screen 1	MW-991-005					7.63
Screen 2	MW-991-004			20 10		4.17
Screen 3	MW-991-003	0.006		0.001		34.8
Screen 4	MW-991-002		0.003			6.10
Screen 5	MW-991-001					5.70
Practical Quant	itation Limit	0.005	0.002	0.010	0.005	
California Maxi Contaminant Le		0.050	0.0151	0.050	NE	
EPA Maximum Contaminant Le		0.050	0.0151	0.100	NE	

(DUP): Duplicate.

NE: Not established.

--: Not detected.

1: Action Level: Treatment technique and public notification triggered.

RESULTS OF METALS ANALYSIS OF GROUNDWATER SAMPLES COLLECTED FROM JPL MONITORING WELLS, FEBRUARY-MARCH 1999

(concentrations in mg/L)

Values equal to or above state MCLs, (or other applicable regulatory limits), are bold and shaded

Sample	Sample			Total	Hexavalent	Field Turbidity
Location	Number	Arsenic	Lead	Chromium	Chromium	(NTUs)
MW-21						(211 00)
Screen 1	MW-991-020					0.27
Screen 2	MW-991-019					0.04
Screen 3	MW-991-018					4.16
Screen 4	MW-991-017					13.1
Screen 5	MW-991-016					4.29
MW-22						
Screen 1	MW-991-015					20.1
Screen 2	MW-991-014					8.10
Screen 3	MW-991-013					5.19
Screen 4	MW-991-012					5.13
Screen 5	MW-991-011			-		2.63
MW-23						·
Screen 1	MW-991-010					4.24
Screen 2	MW-991-009					2.53
Screen 3	MW-991-008					4.31
Screen 4	MW-991-007					5.07
Screen 5	MW-991-006					3.19
MW-24						
Screen 1	MW-991-005					7.63
Screen 2	MW-991-004					4.17
Screen 3	MW-991-003	0.006		0.001		34.8
Screen 4	MW-991-002		0.003			6.10
Screen 5	MW-991-001	**			***	5.70
Practical Quanti	tation Limit	0.005	0.002	0.010	0.005	
California Maxin Contaminant Le		0.050	0.0151	0.050	NE	
EPA Maximum Contaminant Lev	vel	0.050	0.0151	0.100	NE	

(DUP): Duplicate.

NE: Not established.
--: Not detected.

1: Action Level: Treatment technique and public notification triggered.

TABLE 3-6

(concentrations in mg/L)

Sample Location	Sampling Date	Arsenic	Lead	Total Chromium	Hexavalent Chromium	Field Turbidit (NTUs)
MW-1	Aug/Sep 1996			. 		0.8
	Oct/Nov 1996					0.5
	Feb/Mar 1997					2.5
	Jun/Jul 1997					1.9
	Sep/Oct 1997					0.7
	Jan/Feb 1998				,	1.6
	Apr/May 1998					0.5
	Jul/Aug 1998		0.009	0.055		1.0
	Oct/Nov 1998					1.1
	Feb/Mar 1999			•••	**	1.9
MW-3						
Screen 1	Aug/Sep 1996					7.2
	Oct/Nov 1996			~~		3.1
	Feb/Mar 1997					6.1
	Jun/Jul 1997					2.6
	Sep/Oct 1997					2.1
	Jan/Feb 1998					2.9
	Apr/May 1998					4.8
	Jul/Aug 1998					4.5
	Oct/Nov 1998					3.8
	Feb/Mar 1999					4.7
Screen 2	Aug/Sep 1996					1.7
	Oct/Nov 1996					2.7
	Feb/Mar 1997					3.8
	Jun/Jul 1997					1.1
	Sep/Oct 1997					2.1
	Jan/Feb 1998					2.3
	Apr/May 1998					4.3
,	Jul/Aug 1998		0.004			3.3
	Oct/Nov 1998	-			· 	4.3
	Feb/Mar 1999					2.1
Screen 3	Aug/Sep 1996	**				5.2
Sereen 5	Oct/Nov 1996				do m	2.7
	Feb/Mar 1997					1.7
	Jun/Jul 1997					3.4
	Sep/Oct 1997					5.0
	Jan/Feb 1998					4.9
	Apr/May 1998					4.7
	Jul/Aug 1998					4.6
	Oct/Nov 1998					3.3
	Feb/Mar 1999					3.2
Screen 4	Aug/Sep 1996					4.3
	Oct/Nov 1996					2.6
	Feb/Mar 1997		===			4.5
	Jun/Jul 1997					2.7
	Sep/Oct 1997					2.7
	-		~-			
	Jan/Feb 1998					3.0

TABLE 3-6

(concentrations in mg/L)

Sample Location	Sampling Date	Arsenic	Lead	Total Chromium	Hexavalent Chromium	Field Turbidity (NTUs)
	Apr/May 1998				*-	3.6
	Jul/Aug 1998			·		3.1
	Oct/Nov 1998	-				1.3
	Feb/Mar 1999					3.5
Screen 5	Aug/Sep 1996	0.011				1.5
	Oct/Nov 1996	0.007				1.9
	Feb/Mar 1997				**	2.5
	Jun/Jul 1997	0.007				0.8
	Sep/Oct 1997	0.010				1.0
	Jan/Feb 1998	0.009	0.008			2.3
	Apr/May 1998		0.002			2.0
	Jul/Aug 1998	0.006				3.2
	Oct/Nov 1998					4.2
	Feb/Mar 1999					4.4
MW-4		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		,	
Screen 1	Aug/Sep 1996					2.6
	Oct/Nov 1996					1.7
	Feb/Mar 1997					4.6
	Jun/Jul 1997					2.8
	Sep/Oct 1997					4.8
	Jan/Feb 1998	. 				3.4
	Apr/May 1998					3.7
	Jul/Aug 1998					3.0
	Oct/Nov 1998					2.7
	Feb/Mar 1999			**		1.0
Screen 2	Aug/Sep 1996			0.023		3.8
Boloon 2	Oct/Nov 1996			0.014		4.2
	Feb/Mar 1997			0.014		4.5
	Jun/Jul 1997			0.013		2.7
	Sep/Oct 1997			0.013		3.5
	Jan/Feb 1998			0.012		4.8
	Apr/May 1998					1.8
	Jul/Aug 1998			0.011		4.9
	Oct/Nov 1998			0.011		3.4
						6.1
	Feb/Mar 1999	***				
Screen 3	Aug/Sep 1996					0.6
	Oct/Nov 1996	***		47		1.5
	Feb/Mar 1997					2.8
	Jun/Jul 1997			•••		2.0
	Sep/Oct 1997					1.4
	Jan/Feb 1998					4.6
•	Apr/May 1998					3.2
	Jul/Aug 1998		~~			3.9
	Oct/Nov 1998					1.2
	Feb/Mar 1999		00 M			2.9

TABLE 3-6

(concentrations in mg/L)

Sample Location	Sampling Date	Arsenic	Lead	Total Chromium	Hexavalent Chromium	Field Turbidity (NTUs)
Screen 4	Aug/Sep 1996					3.0
	Oct/Nov 1996			· 	***	1.4
	Feb/Mar 1997					2.5
	Jun/Jul 1997					4.6
	Sep/Oct 1997					3.3
	Jan/Feb 1998					4.7
	Apr/May 1998					2.0
	Jul/Aug 1998			0.007		3.6
	Oct/Nov 1998					2.7
	Feb/Mar 1999					3.3
Screen 5	Aug/Sep 1996					4.5
bereen 5	Oct/Nov 1996					4.1
	Feb/Mar 1997					4.4
	Jun/Jul 1997					4.0
	Sep/Oct 1997					3.9
	Jan/Feb 1998					4.5
	Apr/May 1998					3.8
	Jul/Aug 1998	0.005				4.6
	Oct/Nov 1998	0.003				2.9
	Feb/Mar 1999					2.4
MW-5	Aug/Sep 1996		0.000			2.7
	Oct/Nov 1996		0.003			2.7
	Feb/Mar 1997					1.5
	Jun/Jul 1997					4.5
	Sep/Oct 1997					1.0
	Jan/Feb 1998					0.9
	Apr/May 1998					3.1
	Jul/Aug 1998					4.6
	Oct/Nov 1998					4.2
	Feb/Mar 1999				·	7.9
MW-6	Aug/Sep 1996			0.050		4.5
	Oct/Nov 1996			0.011		1.1
	Feb/Mar 1997			0.014		4.3
	Jun/Jul 1997			0.019		2.5
	Sep/Oct 1997	**				1.8
	Jan/Feb 1998					0.4
	Apr/May 1998			0.012	•••	2.1
	Jul/Aug 1998			0.013		3.0
•	Oct/Nov 1998			0.037		3.8
	Feb/Mar 1999			0.017	 ·	2.7
AW 7						4.8
1W-7	Aug/Sep 1996	**		0.013	0.007	4.6 3.5
	Oct/Nov 1996			0.019	0.019	
	Feb/Mar 1997		***		0.010	2.2
	Jun/Jul 1997					1.0
	Sep/Oct 1997			0.018		0.8
	Jan/Feb 1998			0.012		1.2
	Apr/May 1998					4.1

TABLE 3-6

(concentrations in mg/L)

Sample Location	Sampling Date	Arsenic	Lead	Total Chromium	Hexavalent Chromium	Field Turbidity (NTUs)
	Jul/Aug 1998	**				4.7
	Oct/Nov 1998	~-				1.2
	Feb/Mar 1999					4.3
MW-8	Aug/Sep 1996					4.0
	Oct/Nov 1996		0.003			4.7
	Feb/Mar 1997					3.1
	Jun/Jul 1997		0.002			4.6
	Sep/Oct 1997					4.2
	Jan/Feb 1998					3.4
	Apr/May 1998			0.013		2.6
	Jul/Aug 1998					1.2
	Oct/Nov 1998					3.7
	Feb/Mar 1999					1.5
MW-9	Aug/Sep 1996	This fire				2.1
	Oct/Nov 1996					2.5
	Feb/Mar 1997					4.2
	Jun/Jul 1997					3.2
	Sep/Oct 1997				***	1.0
	Jan/Feb 1998					2.4
	Apr/May 1998					1.3
	Jul/Aug 1998					3.0
	Oct/Nov 1998					2.1
	Feb/Mar 1999					2.8
MW-10	Aug/Sep 1996			0.011	0.010	4.5
	Oct/Nov 1996		0.003	0.011		4.9
	Feb/Mar 1997					2.2
	Jun/Jul 1997			0.014		2.9
	Sep/Oct 1997					3.2
	Jan/Feb 1998					2.1
	Apr/May 1998		0.008	0.010	, 	2.6
	Jul/Aug 1998					3.8
	Oct/Nov 1998					3.6
	Feb/Mar 1999			0.014		3.3
MW-11						
Screen 1	Aug/Sep 1996					4.0
	Oct/Nov 1996	***				2.5
	Feb/Mar 1997					2.5
	Jun/Jul 1997	40.00				1.5
	Sep/Oct 1997					4.6
	Jan/Feb 1998	-				1.0
	Apr/May 1998					1.0
	Jul/Aug 1998					4.6
	Oct/Nov 1998	-	air ***			1.4
	Feb/Mar 1999	-		-		1.6

TABLE 3-6

(concentrations in mg/L)

Sample Location	Sampling Date	Arsenic	Lead	Total Chromium	Hexavalent Chromium	Field Turbidity (NTUs)
Screen 2	Aug/Sep 1996					4.5
	Oct/Nov 1996					4.7
	Feb/Mar 1997			***		3.1
	Jun/Jul 1997					4.7
	Sep/Oct 1997			***		3.0
	Jan/Feb 1998	-				2.4
	Apr/May 1998					1.4
	Jul/Aug 1998			6 + 101	***	3.5
	Oct/Nov 1998	49.20				3.7
	Feb/Mar 1999					12.8
Screen 3	Aug/Sep 1996					0.5
	Oct/Nov 1996					2.3
	Feb/Mar 1997					1.7
	Jun/Jul 1997					1.9
	Sep/Oct 1997					3.0
	Jan/Feb 1998					1.4
	Apr/May 1998					2.1
	Jul/Aug 1998			. ••		2.6
	Oct/Nov 1998		0.008	:		4.5
	Feb/Mar 1999					2.6
Screen 4	Aug/Sep 1996					3.9
	Oct/Nov 1996					3.3
	Feb/Mar 1997		0.009			5.2
	Jun/Jul 1997					4.8
	Sep/Oct 1997				·	5.0
	Jan/Feb 1998					3.4
	Apr/May 1998					4.2
	Jul/Aug 1998					3.7
	Oct/Nov 1998					4.5
	Feb/Mar 1999				-	1.4
Screen 5	Aug/Sep 1996	0.007				0.6
	Oct/Nov 1996	0.005		••		1.9
	Feb/Mar 1997		0.002			1.6
	Jun/Jul 1997					0.7
	Sep/Oct 1997					2.6
	Jan/Feb 1998					1.2
	Apr/May 1998	PF 400				1.7
	Jul/Aug 1998			•••		1.7
	Oct/Nov 1998					1.4
	Feb/Mar 1999					4.1
1W-12	1 00,1,1441 1,777		****			
	Aug/Com 1006		0.004			50.4
Screen 1	Aug/Sep 1996	Not Commission				JU. 4
	Oct/Nov 1996	Not Sampled				2 0
	Feb/Mar 1997		0.003	***		3.8
	Jun/Jul 1997		 1-b			4.8
	Sep/Oct 1997	Not Sampled	l*			2.6
	Jan/Feb 1998					2.6

TABLE 3-6

(concentrations in mg/L)

Sample	Sampling			Total	Hexavalent	Field Turbidit
Location	Date	Arsenic	Lead	Chromium	Chromium	(NTUs)
	Apr/May 1998		**	0.010		4.8
	Jul/Aug 1998					5.0
	Oct/Nov 1998					7.4
, , , , , , , , , , , , , , , , , , , 	Feb/Mar 1999					7.5
Screen 2	Aug/Sep 1996		0.024			4.0
	Oct/Nov 1996					4.0
	Feb/Mar 1997					2.5
	Jun/Jul 1997					3.2
	Sep/Oct 1997					3.4
	Jan/Feb 1998		.mp. 200			4.4
	Apr/May 1998					1.6
	Jul/Aug 1998		0.006			3.7
	Oct/Nov 1998					4.9
	Feb/Mar 1999					2.5
Screen 3	Aug/Sep 1996					2.5
	Oct/Nov 1996					3.1
	Feb/Mar 1997					5.0
,	Jun/Jul 1997					4.8
	Sep/Oct 1997					4.2
	Jan/Feb 1998					2.8
	Apr/May 1998					4.4
	Jul/Aug 1998		0.018			3.2
	Oct/Nov 1998					4.2
	Feb/Mar 1999					4.6
Screen 4	Aug/Sep 1996		0.005			1.8
	Oct/Nov 1996					0.7
	Feb/Mar 1997		- -			2.4
	Jun/Jul 1997					2.5
	Sep/Oct 1997					1.6
	Jan/Feb 1998					3.4
	Apr/May 1998				•••	1.7
	Jul/Aug 1998					3.7
	Oct/Nov 1998					4.2
	Feb/Mar 1999			es ma	44 M	3.1
Screen 5	Aug/Sep 1996					2.0
	Oct/Nov 1996					2.0
	Feb/Mar 1997					1.5
	Jun/Jul 1997					5.0
	Sep/Oct 1997					1.0
	Jan/Feb 1998					2.2
	Apr/May 1998					3.5
	Jul/Aug 1998					3.1
	Oct/Nov 1998					1.3
	Feb/Mar 1999					5.0
W-13	Aug/Sep 1996		# **	0.046	0.047	4.1
· -	Oct/Nov 1996		0.005	0.031	0.028	3.0

TABLE 3-6

(concentrations in mg/L)

		• •				
Sample Location	Sampling Date	Arsenic	Lead	Total Chromium	Hexavalent Chromium	Field Turbidity (NTUs)
	Jun/Jul 1997			0.038	0.037	1.2
	Sep/Oct 1997			0.050	0.045	2.4
	Jan/Feb 1998		0.003	0.040	0.036	1.0
	Apr/May 1998			0.082	0.024	3.5
	Jul/Aug 1998			0.025	0.023	1.0
	Oct/Nov 1998			0.036	0.029	3.4
	Feb/Mar 1999	***		0.030	0.019	1.0
MW-14						
Screen 1	Aug/Sep 1996					3.3
	Oct/Nov 1996					4.5
	Feb/Mar 1997					4.3
	Jun/Jul 1997					2.2
	Sep/Oct 1997					3.9
	Jan/Feb 1998		0.004			5.0
	Apr/May 1998			0.011		3.1
	Jul/Aug 1998					3.8
	Oct/Nov 1998					4.2
	Feb/Mar 1999					4.8
Screen 2	Aug/Sep 1996					4.4
	Oct/Nov 1996					3.8
	Feb/Mar 1997					4.8
	Jun/Jul 1997					5.0
	Sep/Oct 1997					3.2
	Jan/Feb 1998	· 	0.003			4.8
	Apr/May 1998					4.9
	Jul/Aug 1998					4.8
	Oct/Nov 1998			***		4.3
	Feb/Mar 1999					4.7
Screen 3	Aug/Sep 1996					1.7
	Oct/Nov 1996					2.0
	Feb/Mar 1997				•••	2.5
	Jun/Jul 1997					0.7
	Sep/Oct 1997			040 Ee		2.9
	Jan/Feb 1998		0.003	0.026		2.1
•	Apr/May 1998					1.4
	Jul/Aug 1998				**	3.1
	Oct/Nov 1998					0.8
	Feb/Mar 1999					0.7
Screen 4	Aug/Sep 1996		***			3.1
	Oct/Nov 1996					2.5
	Feb/Mar 1997					4.1
	Jun/Jul 1997			-		2.3
	Sep/Oct 1997					1.7
	Jan/Feb 1998		0.002			2.7
	Apr/May 1998	-	0.002			1.3
						
	Jul/Aug 1998	**				1.0

TABLE 3-6

(concentrations in mg/L)

Sample Location	Sampling Date	Arsenic	Lead	Total Chromium	Hexavalent Chromium	Field Turbidity (NTUs)
	Oct/Nov 1998					2.3
	Feb/Mar 1999					2.1
Screen 5	Aug/Sep 1996					1.5
	Oct/Nov 1996					4.1
	Feb/Mar 1997		0.028			2.3
	Jun/Jul 1997					1.9
	Sep/Oct 1997					3.8
	Jan/Feb 1998				••	4.7
	Apr/May 1998					1.9
	Jul/Aug 1998					2.4
	Oct/Nov 1998					4.5
	Feb/Mar 1999					4.2
MW-15	Aug/Sep 1996					1.3
	Oct/Nov 1996	***		NA		0.5
	Feb/Mar 1997					2.6
	Jun/Jul 1997					0.2
	Sep/Oct 1997					0.9
	Jan/Feb 1998					1.4
	Apr/May 1998					0.4
	Jul/Aug 1998	. 				3.0
	Oct/Nov 1998					2.0
	Feb/Mar 1999					0.6
MW-16	Aug/Sep 1996			0.018		3.4
	Oct/Nov 1996	Not Sampled	*			
	Feb/Mar 1997				0.007	0.2
	Jun/Jul 1997					0.1
	Sep/Oct 1997	Not Sampled'	k			
	Jan/Feb 1998	-				1.1
	Apr/May 1998			0.014		1.4
	Jul/Aug 1998		**			1.9
	Oct/Nov 1998			0.013		0.9
	Feb/Mar 1999			0.013	0.007	1.0
MW-17						
Screen 1	Aug/Sep 1996			NA	NA	1.0
	Oct/Nov 1996					2.9
	Feb/Mar 1997					2.0
	Jun/Jul 1997					2.2
	Sep/Oct 1997					1.3
	Jan/Feb 1998					5.0
	Apr/May 1998					1.7
	Jul/Aug 1998					1.5
	Oct/Nov 1998				 ,	0.5
	Feb/Mar 1999					1.5

TABLE 3-6

(concentrations in mg/L)

Sample Location	Sampling Date	Arsenic	Lead	Total Chromium	Hexavalent Chromium	Field Turbidit (NTUs)
Screen 2	Aug/Sep 1996			NA	NA	4.5
	Oct/Nov 1996			· 		2.5
	Feb/Mar 1997					2.7
	Jun/Jul 1997					4.5
•	Sep/Oct 1997					1.2
	Jan/Feb 1998					0.8
	Apr/May 1998					2.2
	Jul/Aug 1998		0.007			1.0
	Oct/Nov 1998					1.7
	Feb/Mar 1999					1.1
Screen 3	Aug/Sep 1996		0.002	NA	NA	4.9
	Oct/Nov 1996					4.8
	Feb/Mar 1997					6.0
	Jun/Jul 1997					4.8
	Sep/Oct 1997				0.006	2.5
	Jan/Feb 1998					3.2
	Apr/May 1998					3.6
	Jul/Aug 1998					4.0
	Oct/Nov 1998					4.4
	Feb/Mar 1999				••	6.3
Screen 4	Aug/Sep 1996			NA	NA	2.8
	Oct/Nov 1996					2.6
	Feb/Mar 1997					5.6
	Jun/Jul 1997					4.1
	Sep/Oct 1997					3.6
	Jan/Feb 1998					3.9
	Apr/May 1998					3.7
	Jul/Aug 1998			***		4.4
	Oct/Nov 1998					1.8
	Feb/Mar 1999				·	4.8
Screen 5	Aug/Sep 1996			NA	NA	5.0
	Oct/Nov 1996		0.005			5.2
	Feb/Mar 1997		0.003			25
	Jun/Jul 1997					34
	Sep/Oct 1997					4.8
	Jan/Feb 1998					4.8
	Apr/May 1998		0.002			3.7
	Jul/Aug 1998					4.8
	Oct/Nov 1998					5.1
	Feb/Mar 1999		0.0074			12.4
IW-18			——————————————————————————————————————		<u> </u>	
Screen 1	Aug/Sep 1996			NA	NA	0.9
DOLCOII I	Oct/Nov 1996	Not Sample		7 47 7	1447	0.7
	Feb/Mar 1997					1.9
	Jun/Jul 1997					0.4
	Sep/Oct 1997	Not Sample		- -	- -	7. 4
	Jan/Feb 1998	Not Sampled				

TABLE 3-6

(concentrations in mg/L)

Sample Location	Sampling Date	Arsenic	Lead	Total Chromium	Hexavalent Chromium	Field Turbidity (NTUs)
	Apr/May 1998		***			0.1
	Jul/Aug 1998			, 		3.8
	Oct/Nov 1998					2.3
	Feb/Mar 1999					0.7
Screen 2	Aug/Sep 1996			NA	NA	3.5
	Oct/Nov 1996		0.003			3.4
	Feb/Mar 1997					2.8
	Jun/Jul 1997					1.5
	Sep/Oct 1997					1.4
	Jan/Feb 1998					3.6
	Apr/May 1998					0.1
	Jul/Aug 1998			00 to		3.1
	Oct/Nov 1998					1.9
	Feb/Mar 1999		0.005			2.7
Screen 3	Aug/Sep 1996			NA	NA	4.2
Boroon 5	Oct/Nov 1996		0.002	NA	747.	4.0
	Feb/Mar 1997			0.015	0.007	3.3
	Jun/Jul 1997			0.015	0.007	3.9
	Sep/Oct 1997					2.1
	Jan/Feb 1998			**		0.6
	Apr/May 1998			0.012	0.007	0.04
	Jul/Aug 1998		 .	0.014		2.3
	Oct/Nov 1998					1.7
	Feb/Mar 1999				0.007	1.2
Screen 4	Aug/Sep 1996			NA	NA	2.0
Boroon 4	Oct/Nov 1996		0.003	1121		1.9
	Feb/Mar 1997					2.8
	Jun/Jul 1997	0.005				3.6
	Sep/Oct 1997	0.005				1.1
	Jan/Feb 1998				. 	2.2
	Apr/May 1998					0.04
	Jul/Aug 1998					2.5
	Oct/Nov 1998					4.6
	Feb/Mar 1999					2.7
Screen 5	Aug/Sep 1996			NA NA	NA	2.8
Screen 3	Oct/Nov 1996		0.002	NA		3.6
			0.002			
	Feb/Mar 1997			-~		2.9 4.0
	Jun/Jul 1997					
	Sep/Oct 1997		****			1.7
	Jan/Feb 1998					1.6
	Apr/May 1998		**************************************			0.1
	Jul/Aug 1998					1.1
	Oct/Nov 1998					2.8
	Feb/Mar 1999					2.0

TABLE 3-6

(concentrations in mg/L)

Sample Location	Sampling Date	Arsenic	Lead	Total Chromium	Hexavalent Chromium	Field Turbidit (NTUs)
MW-19						
Screen 1	Aug/Sep 1996			NA	NA	5.0
	Oct/Nov 1996					3.4
	Feb/Mar 1997					6.6
	Jun/Jul 1997					0.8
	Sep/Oct 1997					4.6
•	Jan/Feb 1998					4.7
	Apr/May 1998					2.2
	Jul/Aug 1998					4.9
	Oct/Nov 1998					13.0
	Feb/Mar 1999					5.0
Screen 2	Aug/Sep 1996			NA	NA	4.5
	Oct/Nov 1996					3.6
	Feb/Mar 1997					22
	Jun/Jul 1997					2.8
	Sep/Oct 1997					4.6
	Jan/Feb 1998					4.7
	Apr/May 1998					2.3
	Jul/Aug 1998					4.9
	Oct/Nov 1998					4.8
	Feb/Mar 1999				. 	3.9
Screen 3	Aug/Sep 1996			NA	NA	3.0
	Oct/Nov 1996					5.0
	Feb/Mar 1997					4.9
	Jun/Jul 1997					4.9
	Sep/Oct 1997					2.0
	Jan/Feb 1998					4.1
	Apr/May 1998					2.4
	Jul/Aug 1998					3.9
	Oct/Nov 1998					3.4
	Feb/Mar 1999	**				4.1
Screen 4	Aug/Sep 1996			NA	NA	4.2
	Oct/Nov 1996					8.0
	Feb/Mar 1997	** ***	0.003			. 16
	Jun/Jul 1997					4.9
	Sep/Oct 1997				-	4.8
	Jan/Feb 1998					4.8
	Apr/May 1998			-		4.8
	Jul/Aug 1998			***		4.6
	Oct/Nov 1998					1.5
	Feb/Mar 1999					4.4
Screen 5	Aug/Sep 1996			NA	NA	4.9
	Oct/Nov 1996		40.74	NA		4.6
	Feb/Mar 1997					3.8
	Jun/Jul 1997					2.2
	Sep/Oct 1997					5.0
	Jan/Feb 1998	**		***		4.0

TABLE 3-6

(concentrations in mg/L)

				<u> </u>			
Sample Location	Sampling Date	Arsenic	Lead	Total Chromium	Hexavalent Chromium	Field Turbidity (NTUs)	
	Apr/May 1998				***	4.6	
	Jul/Aug 1998		0.010			4.8	
	Oct/Nov 1998					2.5	
	Feb/Mar 1999					4.4	
MW-20							
Screen 1	Aug/Sep 1996				NA	3.5	
	Oct/Nov 1996	Not Sampled	! *				
	Feb/Mar 1997					2.3	
	Jun/Jul 1997					0.2	
	Sep/Oct 1997	Not Sampled*					
	Jan/Feb 1998					3.2	
	Apr/May 1998				<u></u>	2.9	
	Jul/Aug 1998					3.2	
	Oct/Nov 1998					1.3	
	Feb/Mar 1999					0.5	
Screen 2	Aug/Sep 1996			NA	NA	3.9	
	Oct/Nov 1996					1.1	
	Feb/Mar 1997					2.1	
	Jun/Jul 1997					2.5	
	Sep/Oct 1997					3.6	
	Jan/Feb 1998					0.4	
	Apr/May 1998					1.4	
	Jul/Aug 1998					1.3	
	Oct/Nov 1998					2.4	
	Feb/Mar 1999		m en			0.8	
Screen 3	Aug/Sep 1996			NA	NA	1.7	
	Oct/Nov 1996					1.6	
	Feb/Mar 1997				**	1.9	
	Jun/Jul 1997					2.1	
	Sep/Oct 1997				·	4.6	
	Jan/Feb 1998					2.2	
	Apr/May 1998					1.3	
	Jul/Aug 1998					0.7	
	Oct/Nov 1998	***				2.7	
	Feb/Mar 1999		0.009			0.1	
Screen 4	Aug/Sep 1996			NA	NA	1.0	
	Oct/Nov 1996					1.3	
	Feb/Mar 1997					3.3	
	Jun/Jul 1997					1.3	
	Sep/Oct 1997					1.4	
	Jan/Feb 1998				***	0.6	
	Apr/May 1998					1.7	
	Jul/Aug 1998					2.1	
	Oct/Nov 1998			-		2.6	
	Feb/Mar 1999		-	_		0.8	
	Teu/Iviai 1999					0.0	

TABLE 3-6

(concentrations in mg/L)

<u> </u>					·	
Sample Location	Sampling Date	Arsenic	Lead	Total Chromium	Hexavalent Chromium	Field Turbidity (NTUs)
Screen 5	Aug/Sep 1996			NA	NA	1.8
	Oct/Nov 1996		~-	NA		1.3
	Feb/Mar 1997		0.004			1.6
	Jun/Jul 1997	0.006				1.9
	Sep/Oct 1997					3.5
	Jan/Feb 1998					0.1
	Apr/May 1998					1.1
	Jul/Aug 1998					3.3
	Oct/Nov 1998					1.6
	Feb/Mar 1999					1.0
MW-21						
Screen 1	Aug/Sep 1996			NA	NA	0.9
5010011 1	Oct/Nov 1996	Not Sample	d*			
	Feb/Mar 1997					1.1
	Jun/Jul 1997					2.8
	Sep/Oct 1997	Not Sample	i*			2.0
	Jan/Feb 1998					0.8
	Apr/May 1998					0.7
	Jul/Aug 1998					3.4
	Oct/Nov 1998					2.2
	Feb/Mar 1999					0.3
Screen 2	Aug/Sep 1996			NA	NA	2.1
Scien 2	Oct/Nov 1996				1121	1.2
	Feb/Mar 1997					3.9
	Jun/Jul 1997					1.7
	Sep/Oct 1997					0.8
	Jan/Feb 1998					0.6
	Apr/May 1998					1.8
	Jul/Aug 1998					3.9
	Oct/Nov 1998			•••	·	3.5
	Feb/Mar 1999	•				0.04
Screen 3	Aug/Sep 1996			NA	NA	4.6
Screen 3	Oct/Nov 1996			INA.	11/2	4.9
	Feb/Mar 1997		0.003			4.6
	Jun/Jul 1997		0.003			1.4
	Sep/Oct 1997					3.2
	Jan/Feb 1998		0.003			4.8
	Apr/May 1998		0.005			4.1
	Jul/Aug 1998					4.8
	Oct/Nov 1998					4.8
	Feb/Mar 1999			_ _		4.2
Compan A				NA	NA	2.5
Screen 4	Aug/Sep 1996 Oct/Nov 1996	gas que				2.5 3.3
	Feb/Mar 1997		0.004			3.3 4.4
		40.10	0.004			
	Jun/Jul 1997			***		2.5
	Sep/Oct 1997					4.5
	Jan/Feb 1998					1.1

TABLE 3-6

(concentrations in mg/L)

Sample Location	Sampling Date	Arsenic	Lead	Total Chromium	Hexavalent Chromium	Field Turbidity (NTUs)
	Apr/May 1998					4.6
	Jul/Aug 1998			·		2.4
	Oct/Nov 1998					4.4
	Feb/Mar 1999					13.1
Screen 5	Aug/Sep 1996			NA	NA	4.9
	Oct/Nov 1996					5.0
	Feb/Mar 1997			-	Ber also	28
	Jun/Jul 1997				***	26
	Sep/Oct 1997					12
	Jan/Feb 1998					4.9
	Apr/May 1998					4.6
	Jul/Aug 1998					4.2
	Oct/Nov 1998					14.0
	Feb/Mar 1999					4.3
MW-22 ⁽¹⁾	eliki ar ila adaping kanjarika ila dan kababisa di	Vissoles de la la construir				
Screen 1	Sep/Oct 1997					34
	Jan/Feb 1998					4.5
	Apr/May 1998					4.6
	Jul/Aug 1998					4.8
	Oct/Nov 1998					4.0
	Feb/Mar 1999					20.1
Screen 2	Sep/Oct 1997					4.9
	Jan/Feb 1998					4.2
	Apr/May 1998					4.7
	Jul/Aug 1998					4.4
	Oct/Nov 1998	***			00 to	4.1
	Feb/Mar 1999					8.1
Screen 3	Sep/Oct 1997					3.0
	Jan/Feb 1998					3.8
	Apr/May 1998			***		2.9
	Jul/Aug 1998					4.9
	Oct/Nov 1998					3.5
	Feb/Mar 1999					5.2
Screen 4	Sep/Oct 1997	***				2.8
	Jan/Feb 1998					3.7
	Apr/May 1998					3.0
	Jul/Aug 1998					4.0
	Oct/Nov 1998					4.3
	Feb/Mar 1999					5.1
Screen 5	Sep/Oct 1997					4.4
~ 31 0011 0	Jan/Feb 1998				·-	2.8
	Apr/May 1998					2.9
	Jul/Aug 1998					2.3
	Oct/Nov 1998					3.3
	Feb/Mar 1999					2.6
	Leoliniai 1999			***		2.0

TABLE 3-6

SUMMARY OF METALS DETECTED DURING THE LONG-TERM QUARTERLY SAMPLING PROGRAM, JET PROPULSION LABORATORY

(concentrations in mg/L)

Values equal to or above state MCLs, (or other applicable regulatory limits), are bold and shaded

Sample Location	Sampling Date	Arsenic	Lead	Total Chromium	Hexavalent Chromium	Field Turbidity (NTUs)
MW-23 ⁽¹⁾			····			
Screen 1	Sep/Oct 1997			0.010		3.4
	Jan/Feb 1998					4.1
	Apr/May 1998					4.5
	Jul/Aug 1998					4.0
	Oct/Nov 1998					6.3
	Feb/Mar 1999					4.2
Screen 2	Sep/Oct 1997	**				4.9
	Jan/Feb 1998					4.9
	Apr/May 1998					4.7
	Jul/Aug 1998					3.4
	Oct/Nov 1998					4.1
	Feb/Mar 1999	,				2.5
Screen 3	Sep/Oct 1997					3.0
	Jan/Feb 1998					4.6
	Apr/May 1998					4.6
	Jul/Aug 1998					4.7
	Oct/Nov 1998					4.5
	Feb/Mar 1999					4.3
Screen 4	Sep/Oct 1997					4.9
	Jan/Feb 1998					4.5
	Apr/May 1998					4.9
	Jul/Aug 1998					4.6
	Oct/Nov 1998					4.2
	Feb/Mar 1999					5.1
Screen 5	Sep/Oct 1997					1.8
	Jan/Feb 1998					1.8
	Apr/May 1998					2.4
	Jul/Aug 1998					1.7
	Oct/Nov 1998					2.5
	Feb/Mar 1999					3.2
1W-24 ⁽¹⁾						
Screen 1	Sep/Oct 1997		m ==			1.6
	Jan/Feb 1998		***			3.8
	Apr/May 1998			***		2.7
	Jul/Aug 1998					4.9
	Oct/Nov 1998					3.8
	Feb/Mar 1999					7.6
Screen 2	Sep/Oct 1997					4.4
	Jan/Feb 1998					4.9
	Apr/May 1998	-				4.5
	Jul/Aug 1998	•••	**			4.8
	Oct/Nov 1998					8.3
	Feb/Mar 1999					6.3 4.2
Screen 3						
Screen 3	Sep/Oct 1997 Jan/Feb 1998	0.006				4.6
		0.006				4.7
	Apr/May 1998		·			4.9
	Jul/Aug 1998					4.9

TABLE 3-6

SUMMARY OF METALS DETECTED DURING THE LONG-TERM QUARTERLY SAMPLING PROGRAM, JET PROPULSION LABORATORY

(concentrations in mg/L)

Values equal to or above state MCLs, (or other applicable regulatory limits), are bold and shaded

Sample Location	Sampling Date	Arsenic	Lead	Total Chromium	Hexavalent Chromium	Field Turbidity (NTUs)
	Oct/Nov 1998					7.8
	Feb/Mar 1999	0.006		0.0013		34.8
Screen 4	Sep/Oct 1997					4.0
	Jan/Feb 1998		***			4.9
	Apr/May 1998					4.3
	Jul/Aug 1998					4.8
	Oct/Nov 1998			·	_ 	8.3
	Feb/Mar 1999		0.003			6.1
Screen 5	Sep/Oct 1997					4.8
	Jan/Feb 1998					4.8
	Apr/May 1998					4.0
	Jul/Aug 1998					4.0
	Oct/Nov 1998					8.0
	Feb/Mar 1999					5.7
Practical Quantitati	on Limit	0.005	0.002	0.01	0.005	
Calif. Maximum Contaminant Level		0.05	(a)	0.05	NE	
EPA Maximum Contaminant Level		0.05	(a)	0.10	NE	

NA: Not analyzed.

NE: Not established.

- 1: Wells installed June-August 1997.
- *: Not sampled, no water over screen.
- a: Treatment technique and public notification triggered at 0.015 mg/L.
- --: Not detected.

TABLE 4-1

SUMMARY OF WATER-CHEMISTRY RESULTS FROM GROUNDWATER SAMPLES COLLECTED FROM JPL MONITORING WELLS, FEBRUARY - MARCH 1999

(concentrations in mg/L)

Well			ANION	1S		***************************************	C	ATIO	NS		Measured	Measured
Number	CL	CO ₃	HCO ₃	NO ₃ -N	SO ₄	Na	Mg	K	Ca	Fe	Alkalinity	pН
MW-1	10	0.53	205	0.98	29	22.3	13.9	2.80	43.7		168	7.6
MW-3												
Screen 1	7	0.59	182	0.56	23	17.3	12.9	2.41	37.6	1.10	149	7.7
Screen 2	11	1.16	225	0.79	41	20.5	19.4	2.7	47.8	0.44	185	7.9
Screen 3	22	2.95	181		39	41.5	14	3.01	26	0.13	149	8.4
Screen 4	12	2.99	183	0.21	15	46	8.7	1.96	18.6	0.54	151	8.4
Screen 5	10	23.7	145	~~	3.7	67.4			2.53	1.10	127	9.4
MW-4							,					
Screen 1	9.8	0.24	183	0.87	24	19.3	12.9	2.42	39.6	0.36	150	7.3
Screen 2	65	0.26	202	7.5	81	27.3	27.7	2.37	80	0.62	166	7.3
Screen 3	24	2.69	165	1.4	9.9	33.7	12.8	1.93	23.6	0.22	136	8.4
Screen 4	16	1.91	185	4.6	7.5	39.7	10.7	1.79	27.5	0.72	152	8.2
Screen 5	8.4	1.62	198	1.2	17	35	9.37	1.8	34.2	0.23	163	8.1
MW-5	8.4	0.13	161	1.2	21	13.4	11.6	2.57	37.5	0.59	132	7.1
MW-6	110	0.17	267	10	160	30.9·	43.6	2.32	133	0.13	219	7.0
MW-7	19	0.36	176	5.1	44	18.1	17.3	2.50	52.4	0.35	144	7.5
MW-8	8.6	0.20	156	0.77	23	13.4	11.9	2.17	36.7	0.10	128	7.3
MW-9	21	0.43	211	0.94	52	20.0	17.8	3.04	56.9		173	7.5
MW-10	46	0.14	218	9.2	84	18.6	27.3	2.66	82.5	0.11	179	7.0
MW-11												
Screen 1	16	1.21	235	0.5	39	24.7	19	3.12	50.9	0.12	193	7.9
Screen 2	14	1.57	192	0.12	33	22.4	16.9	2.91	40.2	0.75	158	8.1
Screen 3	12	2.5	193		22	25.5	13.3	2.14	37.5	0.27	159	8.3
Screen 4	10	2.78	170		11	24.9	11.9	2.23	25.8	0.21	140	8.4
Screen 5	11	2.0	154		18	47.2	2.18	1.1	21.5	0.6	127	8.3
MW-12												
Screen 1	10	0.28	173	0.92	26	18.9	14.4	2.73	34.5	0.89	142	7.4
Screen 2	15	0.75	230	2.0	43	24.2	17.8	3.02	55	0.24	189	7.7
Screen 3	19	1.6	195	0.21	39	25.1	15.6	2.79	43.4	0.54	160	8.1
Screen 4	15	1.17	226	1.4	32	22.9	14.3	2.19	56.2	0.18	186	7.9
Screen 5	14	1.68	205	1.0	19	34.6	10.7	1.92	38	0.17	169	8.1
MW-13	21	0.20	193	8.3	50	24.5	19	2.45	56.2]	158	7.2

TABLE 4-1

SUMMARY OF WATER-CHEMISTRY RESULTS FROM GROUNDWATER SAMPLES COLLECTED FROM JPL MONITORING WELLS, FEBRUARY - MARCH 1999

(concentrations in mg/L)

Well		· · · · · · · · · · · · · · · · · · ·	ANION	NS	"		C	ATIO	NS		Measured	Measured
Number	CL	CO ₃	HCO ₃	NO ₃ -N	SO ₄	Na	Mg	K	Ca	Fe	- Alkalinity	pН
MW-14							·					
Screen 1	120	0.23	276	18.6	190	46.2	48.6	2.78	144	0.73	226	7.1
Screen 2	110	0.80	310	15.7	170	34.7	52.3	2.67	139	0.33	254	7.6
Screen 3	90	1.03	251	14.9	120	38.9	42.8	2.91	98.3		206	7.8
Screen 4	37	1.16	224	11	26	28.4	19	2.08	53.4	0.21	184	7.9
Screen 5	79	5.21	160	0.11	15	33.6	12.3	2.19	15.2	0.5	133	8.7
MW-15	20	0.34	206	2.2	49	20.4	17.7	2.94	55.2		169	7.4
MW-16	20	0.25	155	17	40	23.3	19.9	2.29	51.6	0.26	127	7.4
MW-17												
Screen 1	7.4	0.05	174	0.33	25	13.2	13	1.99	40.9	0.16	143	7.3
Screen 2	6.9	.036	177	1.0	28	13.6	13.8	2.08	41.2	0.30	150	7.5
Screen 3	9.0	1.24	191	1.0	30	18.6	16.4	1.85	40.1	1.2	157	8.0
Screen 4	11	1.03	200	1.6	35	27.2	12.5	1.46	45.6	0.76	164	7.9
Screen 5	11	1.31	201	1.7	34	27.4	12.4	1.53	43.9	1.6	165	8.0
MW-18												
Screen 1	5.5	0.37	178	0.78	28	13.1	12.8	2.15	41.0		146	7.5
Screen 2	12	0.55	213	1.3	41	18.3	16.2	2.48	50.0	0.13	175	7.6
Screen 3	13	1.58	243	1.0	40	20.3	17.4	2.68	57.8		200	8.0
Screen 4	11	2.91	178	0.84	26	32	11.2	1.38	29.4	0.17	147	8.4
Screen 5	12	1.81	176	0.31	5.5	49.3	2.17	1.52	13.3	0.17	145	8.2
MW-19												
Screen 1	4.4	0.38	145	0.29	18	11.4	10.5	2.03	31.5	5.7	119	7.6
Screen 2	25	0.13	202	4.8	52	15.5	21.1	1.74	58.3	0.91	166	7.0
Screen 3	95	1.0	308	9.9	110	31.3	40.1	2.79	115	1.5	253	7.7
Screen 4	17	4.55	176	2.2	36	25	18	1.93	33.4	0.52	146	8.6
Screen 5	73	1.34	206	4.3	71	32.2	30.1	2.48	60.6	0.29	169	8.0
MW-20												
Screen 1	49	0.52	200	12	130	21.2	4	3.24	93		164	7.6
Screen 2	14	1.17	180	2.7	34	14.8	17.5	2.04	43		148	8.0
Screen 3	41	6.12	188	1.2	29	62.8	14	2.24	16.9		156	8.7
Screen 4	11	4.19	162		22	60.3	2.89		10.3		134	8.6
Screen 5	8.6	6.85	167		24	56.9	3.47	1.57	13.4		139	8.8

TABLE 4-1

SUMMARY OF WATER-CHEMISTRY RESULTS FROM GROUNDWATER SAMPLES COLLECTED FROM JPL MONITORING WELLS, FEBRUARY - MARCH 1999

(concentrations in mg/L)

Well		~	ANIO	VS			C	ATIO	NS		Measured	Measured
Number	CL	CO ₃	HCO ₃	NO ₃ -N	SO ₄	Na	Mg	K	Ca	Fe	Alkalinity	pН
MW-21												
Screen 1	75	0.11	204	15	100	29.1	31.3	1.92	94.5		167	6.9
Screen 2	130	0.41	313	7.8	150	48.6	42.8	2.75	128	0.15	257	7.3
Screen 3	95	0.64	312	10	94	38.4	36.6	2.88	115	0.123	256	7.5
Screen 4	50	0.39	237	8.8	47	26.9	24.1	2.22	75.9	0.3	194	7.4
Screen 5	65	1.06	259	10	81	32.5	30.6	2.61	91.9	1.6	213	7.8
MW-22												
Screen 1	120	0.29	277	12	170	31.5	48	2.6	138	1.9	227	7.2
Screen 2	59	0.71	219	9.4	59	30.6	26.5	2.26	72.4	0.62	180	7.7
Screen 3	30	1.2	184	9.0	21	31.8	14.3	1.8	45.4	0.47	151	8.0
Screen 4	12	0.87	168	4.9	6.9	25.7	9.78	1.51	33.2	1.06	138	7.9
Screen 5	7.7	10.4	127		48	72			4.89	.034	108	9.1
MW-23												
Screen 1	100	0.17	254	14	140	32.7	41.4	2.57	118	1.03	208	7.0
Screen 2	110	0.31	238	15	150	33.3	40.4	2.54	117	0.54	195	7.3
Screen 3	29	0.73	177	10	17	27.3	15.3	1.75	47	0.55	145	7.8
Screen 4	13	0.87	168	6.0	6.0	26.1	10.6	1.66	32.2	0.29	138	7.9
Screen 5	24	57.4	222		32	110	1.13	2.58	6.24	0.13	201	9.6
MW-24												
Screen 1	9.4	0.96	186	1.3	32	16.3	16.5	2.43	41.7	0.95	153	7.9
Screen 2	27	3.21	156	2.8	14	38.8	10.9	2.58	24.6	1.1	129	8.5
Screen 3	26	0.81	197	2.0	17	37.8	12.2	1.90	36.2	5.2	162	7.8
Screen 4	12	7.09	173	2.8	7.1	41.2	9.987	2.10	18.0	0.53	144	8.8
Screen 5	8.9	1.10	213	1.2	21	38.2	1.71	1.71	36.1	0.75	175	7.9
Detection Limit	1	0.001	0.001	0.1	2	1	1	1	1	0.1	2	

TABLE 4-2

GENERAL WATER TYPES OBSERVED DURING THE OCTOBER-NOVEMBER 1998 SAMPLING EVENT (AS INTERPRETED WITH STIFF DIAGRAMS)

Well/Screen Number	Water Type ¹	Well/Screen Number	Water Type	Well/Screen Number	Water Type
MW-1	Type 1	MW-15	Type 1/3	MW-23	
MW-3		MW-16	Type 1/3	Screen 1	Type 1/3
Screen 1	Type 1	MW-17	- 1	Screen 2	Type 3
Screen 2	Type 1	Screen 1	Type 1	Screen 3	Type 1/2/3
Screen 3	Type 2	Screen 2	Type 1	Screen 4	Type 1/2
Screen 4	Type 2	Screen 3	Type 1	Screen 5	Type 2
Screen 5	Type 2	Screen 4	Type 1/2	MW-24	1 y p c 2
MW-4	1) 0	Screen 5	Type 1/2	Screen 1	Type 1
Screen 1	Type 1	MW-18	- 51	Screen 2	Type 2/3
Screen 2	Type 3/1	Screen 1	Type 1	Screen 3	Type 1/2
Screen 3	Type 3/1 Type 1/2/3	Screen 2	Type I Type I	Screen 4	Type 2/3
Screen 4	Type 2/1	Screen 3	Type 1	Screen 5	Type 2/3 Type 1/2
Screen 5	Type 1/2	Screen 4	Type 1/2		1)pc 1/2
MW-5	Type 1	Screen 5	Type 2		
MW-6	Type 3/1	MW-19			
MW-7	Type 1	Screen 1	Type 1		
MW-8	Type 1	Screen 2	Type 1/3		
MW-9	Type 1	Screen 3	Type 3/1		
MW-10	Type 1	Screen 4	Type 1/3		
MW-11	71	Screen 5	Type 1/3		
Screen 1	Type 1	MW-20			
Screen 2	Type 1	Screen 1	Type 3		
Screen 3	Type 1	Screen 2	Type 1		
Screen 4	Type 1	Screen 3	Type 2		
Screen 5	Type 2	Screen 4	Type 2		
MW-12		Screen 5	Type 2		
Screen 1	Type 1	MW-21			
Screen 2	Type 1	Screen 1	Type 1/3		
Screen 3	Type 1	Screen 2	Type 1/3		
Screen 4	Type 1	Screen 3	Type 1/3		
Screen 5	Type 1/2	Screen 4	Type 1/3		
MW-13	Type 1/3	Screen 5	Type 1/3		
MW-14		MW-22			
Screen 1	Type 3	Screen 1	Type 3		4
Screen 2	Type 3	Screen 2	Type 1/3		
Screen 3	Type 3	Screen 3	Type 1/2/3		
Screen 4	Type 1/3	Screen 4	Type 1/2/3		
Screen 5	Type 2	Screen 5	Type 2		

^{1:} General Water Types:

Note: Water type denoted by more than one number (i.e., 1/2) represent blends of the listed basic types, with the more dominant type listed first.

D:\DPL\991\991-4tbl

Type 1: Calcium-bicarbonate groundwater

Type 2: Sodium-bicarbonate groundwater

Type 3: Calcium-bicarbonate/chloride/sulfate/nitrate groundwater

TABLE 4-3

SUMMARY OF QUALITY CONTROL ANALYSIS OF WATER-CHEMISTRY DATA FROM GROUNDWATER SAMPLES COLLECTED FROM JPL MONITORING WELLS, FEBRUARY-MARCH 1999

(ion concentrations are meq/L; TDS concentrations are mg/L)

Well	Total	Total	Total	Charge Balance	Measured	Calculated	Measured TDS/
Number	Anion	Cations	Ions	Error ⁽¹⁾	TDS	TDS	Calculated TDS(2)
MW-1	4.32	4.29	8.61	0.3	260	224	1.2
MW-3			· · · · · · · · · · · · · · · · · · ·				
Screen 1	3.70	3.76	7.46	0.8	200	192	1.0
Screen 2	4.92	4.95	9.87	0.3	290	255	1.1
Screen 3	4.41	4.33	8.74	0.9	240	238	1.0
Screen 4	3.69	3.70	7.39	0.1	220	196	1.1
Screen 5	2.90	3.06	5.96	2.7	210	180	1.2
MW-4		W-24-1					
Screen 1	3.84	3.94	7.78	1.3	210	199	1.1
Screen 2	7.38	7.53	14.91	1.0	410	391	1.0
Screen 3	3.70	3.75	7.45	0.7	210	191	1.1
Screen 4	3.98	4.03	8.01	0.6	230	201	1.1
Screen 5	3.94	4.06	8.00	1.5	240	206	1.2
MW-5	3.40	3.48	6.88	1.2	200	176	1.1
MW-6	11.50	11.60	23.10	0.4	680	621	1.1
MW-7	4.70	4.98	9.68	2.9	270	246	1.1
MW-8	3.34	3.43	6.77	1.3	200	174	1.2
MW-9	5.20	5.26	10.46	0.6	320	276	1.2
MW-10	7.28	7.25	14.53	0.2	400	378	1.1
MW-11							
Screen 1	5.16	5.26	10.42	1.0	300	270	1.1
Screen 2	4.25	4.45	8.70	2.3	270	226	1.2
Screen 3	3.98	4.13	8.11	1.8	230	210	1.1
Screen 4	3.31	3.41	6.72	1.5	190	172	1.1
Screen 5	3.23	3.33	6.56	1.5	180	179	1.0
MW-12						·	
Screen 1	3.73	3.80	7.53	0.9	210	194	1.1
Screen 2	5.24	5.34	10.58	0.9	290	274	1.1
Screen 3	4.56	4.62	9.18	0.7	260	243	1.1
Screen 4	4.92	5.04	9.96	1.2	280	256	1.1
Screen 5	4.56	4.33	8.89	2.6	240	222	1.1
MW-13	5.39	5.5	10.89	1.01	300	277	1.1

4/30/99

TABLE 4-3

SUMMARY OF QUALITY CONTROL ANALYSIS OF WATER-CHEMISTRY DATA FROM GROUNDWATER SAMPLES COLLECTED FROM JPL MONITORING WELLS, FEBRUARY-MARCH 1999

(ion concentrations are meq/L; TDS concentrations are mg/L)

				·			
Well	Total	Total	Total	Charge Balance	Measured	Calculated	Measured TDS/
Number	Anion	Cations	Ions	Error ⁽¹⁾	TDS	TDS	Calculated TDS ⁽²⁾
MW-14			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
Screen 1	13.20	13.30	26.50	0.4	710	707	1.0
Screen 2	12.80	12.80	25.60	0.0	700	678	1.0
Screen 3	10.20	10.20	20.40	0.0	540	532	1.0
Screen 4	5.27	5.52	10.79	2.3	330	288	1.1
Screen 5	3.20	3.29	6.49	1.4	180	242	0.7
MW-15	5.12	5.18	10.30	0.6	330	269	1.2
MW-16	5.15	5.29	10.44	1.3	290	251	1.2
MW-17						***********	
Screen 1	3.61	3.74	7.35	1.8	220	188	1.2
Screen 2	3.75	3.84	7.59	1.2	220	194	1.1
Screen 3	4.09	4.21	8.30	1.4	210	213	1.0
Screen 4	4.43	4.53	8.96	1.1	250	234	1.1
Screen 5	4.44	4.45	8.89	0.1	250	234	1.1
MW-18							
Screen 1	3.71	3.73	7.44	0.3	240	191	1.3
Screen 2	4.79	4.69	9.48	1.1	290	247	1.2
Screen 3	5.27	5.27	10.54	0.0	320	273	1.2
Screen 4	3.85	3.82	7.67	0.4	220	202	1.1
Screen 5	3.38	3.27	6.65	1.7	210	173	1.2
MW-19							
Screen 1	2.90	2.99	5.89	1.5	170	155	1.1
Screen 2	5.45	5.37	10.82	0.7	300	279	1.1
Screen 3	10.70	10.50	21.20	0.9	620	558	1.1
Screen 4	4.31	4.29	8.60	0.2	250	225	1.1
Screen 5	7.23	6.97	14.20	1.8	400	377	1.1
MW-20							
Screen 1	8.23	8.07	16.30	1.0	420	411	1.0
Screen 2	4.26	4.29	8.55	0.4	240	218	1.1
Screen 3	4.97	4.78	9.75	1.9	300	266	1.1
Screen 4	3.45	3.37	6.82	1.2	200	190	1.1
Screen 5	3.52	3.47	6.99	0.7	210	197	1.1

TABLE 4-3

SUMMARY OF QUALITY CONTROL ANALYSIS OF WATER-CHEMISTRY DATA FROM GROUNDWATER SAMPLES COLLECTED FROM JPL MONITORING WELLS, FEBRUARY-MARCH 1999

(ion concentrations are meq/L; TDS concentrations are mg/L)

			'''			·····	
Well	Total	Total	Total	Charge Balance	Measured	Calculated	Measured TDS/
Number	Anion	Cations	Ions	Error ⁽¹⁾	TDS	TDS	Calculated TDS(2)
MW-21				777-7-2-14-14-1			***
Screen 1	8.61	8.62	17.23	0.1	500	447	1.1
Screen 2	12.50	12.10	24.60	1.6	730	664	1.1
Screen 3	10.50	10.50	21.00	0.0	610	546	1.1
Screen 4	6.90	7.00	13.90	0.7	410	352	1.2
Screen 5	8.50	8.59	17.09	0.5	500	444	1.1
MW-22							
Screen 1	12.30	12.30	24.60	0.0	670	660	1.0
Screen 2	7.16	7.19	14.35	0.2	440	368	1.2
Screen 3	4.95	4.88	9.83	0.7	310	245	1.3
Screen 4	3.59	3.62	7.21	0.4	200	179	1.1
Screen 5	3.38	3.45	6.83	1.0	230	205	1.1
MW-23							
Screen 1	10.90	10.80	21.70	0.5	570	575	1.0
Screen 2	11.20	10.70	21.90	2.3	600	586	1.0
Screen 3	4.80	4.84	9.64	0.4	270	236	1.1
Screen 4	3.68	3.66	7.34	0.3	200	179	1.1
Screen 5	5.36	5.25	10.61	1.0	300	343	0.9
MW-24	· · · · · · · · · · · · · · · · · · ·						
Screen 1	4.08	4.21	8.29	1.6	220	213	1.0
Screen 2	3.83	3.88	7.71	0.6	210	202	1.0
Screen 3	4.47	4.51	8.98	0.4	240	236	1.0
Screen 4	3.57	3.57	7.14	0.0	200	186	1.1
Screen 5	4.27	4.24	8.51	0.4	230	215	1.1

¹ Expressed in percent: ideal error range between 0 and 5 percent. Values between 5 and 10 percent considered acceptable for intended use.

² Ideal values range between 0.8 and 1.2.

TABLE 5-1
GROUNDWATER MONITORING WELL WATER LEVEL MEASUREMENTS
February 19, 1999

				Reference	Water Level
Well	Screen	Date	Depth to Water	Elevation	Elevation
Number	Number	Measured	(ft)	(ft msl)	(ft msl)
MW-1		2/19/99	23.26	1116.69	1093.43
MW-3	1 (top)	2/19/99	100.09	1100.34	1000.25
	2	2/19/99	106.04	1100.34	994.30
	3	2/19/99	104.27	1100.34	996.07
	4	2/19/99	116.58	1100.34	983.76
	5	2/19/99	124.74	1100.34	975.60
MW-4	1 (top)	2/19/99	79.88	1082.84	1002.96
	2	2/19/99	87.16	1082.84	995.68
	3	2/19/99	87.34	1082.84	995.50
	4	2/19/99	88.74	1082.84	994.10
	5	2/19/99	98.07	1082.84	984.77
MW-5		2/19/99	71.11	1071.62	1000.51
MW-6		2/19/99	181.86	1188.54	1006.68
MW-7		2/19/99	NA	1212.90	NA
MW-8		2/19/99	137.72	1139.55	1001.83
MW-9		2/19/99	19.87	1106.06	1086.19
MW-10		2/19/99	89.46	1087.73	998.27
MW-11	1 (top)	2/19/99	113.46	1139.30	1025.84
	2	2/19/99	136.70	1139.30	1002.60
	3	2/19/99	142.70	1139.30	996.60
	4	2/19/99	146.86	1139.30	992.44
	5	2/19/99	156.94	1139.30	982.36
MW-12	1 (top)	2/19/99	91.24	1102.14	1010.90
	2	2/19/99	104.25	1102.14	997.89
	3	2/19/99	105.27	1102.14	996.87
	4	2/19/99	107.38	1102.14	994.76
	5	2/19/99	115.81	1102.14	986.33
MW-13		2/19/99	184.21	1183.49	999.28

TABLE 5-1
GROUNDWATER MONITORING WELL WATER LEVEL MEASUREMENTS
February 19, 1999

				Reference	Water Leve
Well	Screen	Date	Depth to Water	Elevation	Elevation
Number	Number	Measured	(ft)	(ft msl)	(ft msl)
MW-14	1 (top)	2/19/99	164.58	1173.47	1008.89
	2	2/19/99	164.10	1173.47	1009.37
	3	2/19/99	163.39	1173.47	1010.08
	4	2/19/99	163.22	1173.47	1010.25
	5	2/19/99	163.04	1173.47	1010.43
MW-15		2/19/99	30.50	1120.68	1090.18
MW-16		2/19/99	NA	1236.29	NA
MW-17	1 (top)	2/19/99	200.50	1191.21	990.71
	2	2/19/99	203.43	1191.21	987.78
	3	2/19/99	208.28	1191.21	982.93
	4	2/19/99	210.44	1191.21	980.77
	5	2/19/99	218.16	1191.21	973.05
MW-18	1 (top)	2/19/99	241.89	1225.41	983.52
	2	2/19/99	241.06	1225.41	984.35
	3	2/19/99	238.44	1225.41	986.97
	4	2/19/99	246.66	1225.41	978.75
	5	2/19/99	260.67	1225.41	964.74
MW-19	1 (top)	2/19/99	158.37	1142.94	984.57
	2	2/19/99	157.89	1142.94	985.05
	3	2/19/99	156.96	1142.94	985.98
	4	2/19/99	160.73	1142.94	982.21
	5	2/19/99	160.85	1142.94	982.09
MW-20	1 (top)	2/19/99	193.79	1165.05	971.26
	2	2/19/99	191.87	1165.05	973.18
	3	2/19/99	192.15	1165.05	972.90
	4	2/19/99	214.14	1165.05	950.91
	5	2/19/99	194.91	1165.05	970.14

G:\JPL2\H2Olevels...Feb99.xls 4/30/99

TABLE 5-1
GROUNDWATER MONITORING WELL WATER LEVEL MEASUREMENTS
February 19, 1999

				Reference	Water Level
Well	Screen	Date	Depth to Water	Elevation	Elevation
Number	Number	Measured	(ft)	(ft msl)	(ft msl)
MW-21	1 (top)	2/19/99	59.20	1059.10	999.90
	2	2/19/99	56.44	1059.10	1002.66
	3	2/19/99	56.00	1059.10	1003.10
· · · · · · · · · · · · · · · · · · ·	4	2/19/99	56.84	1059.10	1002.26
	5	2/19/99	56.76	1059.10	1002.34
MW-22	1 (top)	2/19/99	176.50	1176.98	1000.48
	2	2/19/99	172.56	1176.98	1004.42
	3	2/19/99	172.33	1176.98	1004.65
	4	2/19/99	176.28	1176.98	1000.70
	5	2/19/99	179.51	1176.98	997.47
MW-23	1 (top)	2/19/99	109.76	1108.84	999.08
	2	2/19/99	108.66	1108.84	1000.18
	3	2/19/99	108.41	1108.84	1000.43
	4	2/19/99	112.50	1108.84	996.34
	5	2/19/99	113.63	1108.84	995.21
MW-24	1 (top)	2/19/99	201.30	1200.94	999.64
	2	2/19/99	201.72	1200.94	999.22
	3	2/19/99	201.68	1200.94	999.26
	4	2/19/99	205.68	1200.94	995.26
	5	2/19/99	209.60	1200.94	991.34

TABLE 5-2 GROUNDWATER MONITORING WELL WATER LEVEL MEASUREMENTS March 24, 1999

				Reference	Water Level
Well	Screen	Date	Depth to Water	Elevation	Elevation
Number	Number	Measured	(ft)	(ft msl)	(ft msl)
MW-1		3/24/99	23.87	1116.69	1092.82
MW-3	1 (top)	3/24/99	97.14	1100.34	1003.20
	2	3/24/99	101.48	1100.34	998.86
	3	3/24/99	101.70	1100.34	998.64
	4	3/24/99	108.38	1100.34	991.96
	5	3/24/99	113.18	1100.34	987.16
MW-4	1 (top)	3/24/99	77.14	1082.84	1005.70
	2	3/24/99	82.70	1082.84	1000.14
	3	3/24/99	82.75	1082.84	1000.09
	4	3/24/99	83.48	1082.84	999.36
	5	3/24/99	90.40	1082.84	992.44
MW-5		3/24/99	68.08	1071.62	1003.54
MW-6		3/24/99	178.05	1188.54	1010.49
MW-7		3/24/99	NA	1212.90	NA
MW-8		3/24/99	133.78	1139.55	1005.77
MW-9		3/24/99	19.97	1106.06	1086.09
MW-10		3/24/99	85.38	1087.73	1002.35
MW-11	1 (top)	3/24/99	110.66	1139.30	1028.64
	2	3/24/99	131.74	1139.30	1007.56
	3	3/24/99	136.65	1139.30	1002.65
	4	3/24/99	138.21	1139.30	1001.09
	5	3/24/99	148.60	1139.30	990.70
MW-12	1 (top)	3/24/99	90.62	1102.14	1011.52
	2	3/24/99	100.16	1102.14	1001.98
	3	3/24/99	100.93	1102.14	1001.21
	4	3/24/99	102.02	1102.14	1000.12
	5	3/24/99	108.35	1102.14	993.79
MW-13		3/24/99	179.50	1183.49	1003.99

G:\JPL2\H2Olevels\...Mar99.xls 4/30/99

TABLE 5-2 GROUNDWATER MONITORING WELL WATER LEVEL MEASUREMENTS March 24, 1999

				'n c	XX7 . Y 1
XX 7 . 11	G -	D :	D 4 W	Reference	Water Level
Well	Screen	Date	Depth to Water	Elevation	Elevation
Number	Number	Measured	(ft)	(ft msl)	(ft msl)
MW-14	1 (top)	3/24/99	160.59	1173.47	1012.88
	2	3/24/99	160.21	1173.47	1013.26
	3	3/24/99	159.58	1173.47	1013.89
	4	3/24/99	159.49	1173.47	1013.98
****	5	3/24/99	159.33	1173.47	1014.14
MW-15		3/24/99	30.10	1120.68	1090.58
MW-16		3/24/99	232.75	1236.29	1003.54
MW-17	1 (top)	3/24/99	194.91	1191.21	996.30
	2	3/24/99	198.40	1191.21	992.81
	3	3/24/99	202.12	1191.21	989.09
	4	3/24/99	202.15	1191.21	989.06
	5	3/24/99	207.08	1191.21	984.13
MW-18	l (top)	3/24/99	235.69	1225.41	989.72
	2	3/24/99	235.14	1225.41	990.27
	3	3/24/99	232.95	1225.41	992.46
•	4	3/24/99	238.00	1225.41	987.41
	5	3/24/99	248.13	1225.41	977.28
MW-19	1 (top)	3/24/99	154.36	1142.94	988.58
	2	3/24/99	153.35	1142.94	989.59
	3	3/24/99	152.16	1142.94	990.78
	4	3/24/99	153.32	1142.94	989.62
	5	3/24/99	153.36	1142.94	989.58
MW-20	l (top)	3/24/99	189.48	1165.05	975.57
	2	3/24/99	187.61	1165.05	977.44
	3	3/24/99	186.78	1165.05	978.27
	4	3/24/99	199.58	1165.05	965.47
	5	3/24/99	190.08	1165.05	974.97

TABLE 5-2 GROUNDWATER MONITORING WELL WATER LEVEL MEASUREMENTS March 24, 1999

				Reference	Water Level
Well	Screen	Date	Depth to Water	Elevation	Elevation
Number	Number	Measured	(ft)	(ft msl)	(ft msl)
MW-21	1 (top)	3/24/99	55.73	1059.10	1003.37
	2	3/24/99	53.13	1059.10	1005.97
	3	3/24/99	52.69	1059.10	1006.41
	4	3/24/99	53.45	1059.10	1005.65
	5	3/24/99	53.52	1059.10	1005.58
MW-22	1 (top)	3/24/99	171.79	1176.98	1005.19
	2	3/24/99	168.53	1176.98	1008.45
	3	3/24/99	168.32	1176.98	1008.66
	4	3/24/99	171.34	1176.98	1005.64
	5	3/24/99	174.04	1176.98	1002.94
MW-23	1 (top)	3/24/99	104.92	1108.84	1003.92
**********	2	3/24/99	104.00	1108.84	1004.84
	3	3/24/99	103.79	1108.84	1005.05
	4	3/24/99	106.71	1108.84	1002.13
	5	3/24/99	107.35	1108.84	1001.49
MW-24	1 (top)	3/24/99	196.44	1200.94	1004.50
	2	3/24/99	197.48	1200.94	1003.46
	3	3/24/99	197.40	1200.94	1003.54
	4	3/24/99	200.11	1200.94	1000.83
	5	3/24/99	203.12	1200.94	997.82

G:\JPL2\H2Olevels\...Mar99.xls 4/30/99

FIGURES

APPENDIX A

WELL DEVELOPMENT/WELL SAMPLING LOG FORMS FOR SHALLOW WELLS

	1		i
Page		of	

						Pageof
WELL DEVELOPMENT LOG / WELL SAMPLING LOG						
Project Na Project Num E Site Engir	nber: Date:		.0268 3/99 W.T.TUI			MW-1 2"GRINDEDS PUMP DRT-ISCE, YSI 3500 NONE
Depth to Water (Depth to Sedime Thickness of Sed	ent (ft) diment (ft	77		<u>Top</u>	eference Point of 4"Cas.nl(of 4" Cas.nl(After 23.86 119.20 0.60
Diameter of Cas Water Column H Casing Volume (Total Volume Pur	eight (ft) gals) =	π(Diam. o	0.333 15.34 f Casing (ft)/	2) ² (Water Column	Height (ft))(7.48 g Casing Volumes I	
Time	рН	Turbidity (NTU)	(℃) Jemb	Conductivity (µmhos)	Pump Rate (gpm)	Comments
1000					2.0	PUMP ON CONTROL BOX
					a .	SET AT 188 HZ
1005	7.00	1.99	14.4	341	20	WATER CLEAR
1010	7.93	2.60	14.4	336	7.0	Waron Caran
1015	7.89	3.05	14.8	332	2.0	Waren Char
1020	7.75	3.29	15.2	341	7.0 7.0	WATER CLEAN
1022	7.57	1.99	15.3	343	0.02 -	TRADY TO SMPLE
1025					0.00	Mw. 971 - 079
1076						PUMP OFF
10/10						
						· · · · · · · · · · · · · · · · · · ·
	لِــــا				1100=	
Notes Sampling	Procedu	ıres:	Pimp	SETAT S	DIOC	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
						
						

	i	
Page_	of	

						Page of	
WELL DEVELOPMENT LOG / WELL SAMPLING LOG							
Project Na	ame :	JP	2	W	ell Number :	Mw-5	
Project Nun		1572	.0268		Equipment:	Z"GIZNOFOS PUMP	
•	Date:		22/99	· · · · · · · · · · · · · · · · · · ·		YSI 3500' DET-ISE	
Site Engir				2711-Kasian	Contractor :		
Ono Engin		<u> </u>	7	C. 13.V-Katokec	community.		
	Before Reference Point After						
			(S.59				
Depth to Water (• •		33.76	_ <u>19</u>	0 6 4" CAS. A	16 133.76	
•	Depth to Sediment (ft) 135.76 Top of 4 CAS.NB 135.76 Thickness of Sediment (ft) 6.24						
THICKINGS OF Sec	ament (i	•					
Depth of Well (ft)	12	40.0				
Diameter of Cas	ing (ft)		0.333				
Water Column H			05.17	2		. 47 d	
Casing Volume ((gals) =		_	2) ² (Water Column			
Total Volume Pur	rged (gal	s)(jb		Casing Volumes	Purged	
Time	Hq	Turbidity	Temp.	Conductivity	Pump Rate	Commonto	
Time	рп	(NTU)	(C)	(µmhos)	(gpm)	Comments	
1405		_			1,7	PUMP ON CONTROL BOX	
						Ser @ 214 H2	
1410	7.63	11.15	17,4	326	1.7	WATER CITAL	
1415	8.1	6.36	17.6	305	1.7	WOTER CLAAR	
1420	7.56	6.96	17.5	303	1.2	Waren Chan	
1425	7.67		17.0	299 294	1. 1	Waren Cuean	
1430	7.63	7,91	17.4	294	1, 1	WATER CLEAR	
1440	7.45	7.05	17.6	293	1.7	WATER CLEAR	
1445	7.47	7,95	<u> </u>	213	0.02	FLINDY TO SUMPLE	
17145					0.0	Colleg Mw-911-067	
1447	-					PUMP ON	
• • • • • • • • • • • • • • • • • • • •					*		
· · · · · · · · · · · · · · · · · · ·							
		: 					
		· 			·		
Nietes Committee	Duo o o ele			F A 75	· Por	·	
Notes Sampling	rrocedi	леs: <i>т с</i>	シャヘレン	-1 +- /-	BTOC		
					 		
	···						
	·						

	l l		1
Page	·	of	1
uge		v	

				•	•	
WELL	DEVEL	OPMENT	LOG /	WELL S	AMPLING	LOG

WELL DEVELOPMENT LOG / WELL SAMPLING LOG						
	nber : Date :	1577	3/22/99		MW-6 2"GRANDES PUMP DRF-15CE: YS13500 NONE	
Site Engii	neer:	J.BRANT	T. T.V.	271/N-Karan	Contractor :	<u> </u>
Before Reference Point After Depth to Water (ft) 178.50 Top of 4" CASING 178.50 Depth to Sediment (ft) 238.50 Top of 4" CASING 238.50 Thickness of Sediment (ft) 6.2 6.2						
Depth of Well (ft) Diameter of Casing (ft) Water Column Height (ft) Casing Volume (gals) = π(Diam. of Casing (ft)/2) ² (Water Column Height (ft))(7.48 gals/ft ³) = 39.25 Casing Volume Purged (gals)						
Time	pН	Turbidity (NTU)	で) Temp.	Conductivity (μmhos)	Pump Rate (gpm)	Comments
0950					1.0	PUMP ON CONTROL
			<u> </u>			130x Set AT 340 Hz
0955	7.61	33,5	19.4	1067	1.8	WATER SL. CLOUDY
1000	6.95	242	207	984	i-E	WATER SC. CLOUDY
1005	6.17	18.4	20.5	1042	(.8	Warez SL. CWDY
1010	6.73	10.4	20.6	1053	(,ઇ	WATER CLEANING
1015	6.70	6.2	20.6	1044	1.9	WATER CIEAR
1020	6.76	5.42	20.5	1022	1.9	WATER CIRAR
1025	6.78	3.26	20,5	995	1.5	WATER CLEAR
1030	6.79	3.30	20.6	1019	1,8	WATER CLOSE
1032	6.78	2.71	20,5	1025	1.3	CLAMP CEAR! READY
1035					0.02	TREDICE FROM COLLECT
			['			MW-991-666
1036			<u> </u>			PUMP OFF
			<u> </u>			
			<u></u> '			
			1			
			<u> </u>			
Notes Sampling	Procedu	ires:	S SMS	SET AT 18	5/B100	
						# · · · · · · · · · · · · · · · · · · ·

	£		
Page	<u> </u>	of	

		-		
A/F::		. ~ ~ / /	L SAMPLING	
///	/ 1			
VVELL DEVEL	COPIVICIALI	LL)(3 / VVCI.	I SAIVIPI IIV	

Project Name: <u>JPC</u> Well Number: <u>Mw-7</u>

Project Number: 1572. 0268 Equipment: 2"GRUNDFOS FUMP

Date: 3/19/99 DIZT-ISCE, YSI 3500
Site Engineer: JBIZENNER I MAYES Contractor: NONE

 Before
 Reference Point
 After

 Depth to Water (ft)
 Z10.75
 T5P 0: 4"CAS,NG
 Z10.75

 Depth to Sediment (ft)
 Z68.47
 T0P 0: 4"CAS,NG
 Z68.47

 Thickness of Sediment (ft)
 1.53
 1.53

Depth of Well (ft)

Diameter of Casing (ft)

Water Column Height (ft)

Z70.0

0.333

57.72

Water Column Height (ft) $\frac{57.72}{\pi \text{(Diam. of Casing (ft)/2)}^2 \text{(Water Column Height (ft))(7.48 gals/ft}^3)} = \frac{37.58}{\pi \text{(Diam. of Casing (ft)/2)}^2 \text{(Water Column Height (ft))(7.48 gals/ft}^3)} = \frac{37.58}{\pi \text{(Diam. of Casing (ft)/2)}^2 \text{(Water Column Height (ft))(7.48 gals/ft}^3)} = \frac{37.58}{\pi \text{(Diam. of Casing (ft)/2)}^2 \text{(Water Column Height (ft))(7.48 gals/ft}^3)} = \frac{37.58}{\pi \text{(Diam. of Casing (ft)/2)}^2 \text{(Water Column Height (ft))(7.48 gals/ft}^3)} = \frac{37.58}{\pi \text{(Diam. of Casing (ft)/2)}^2 \text{(Water Column Height (ft))(7.48 gals/ft}^3)} = \frac{37.58}{\pi \text{(Diam. of Casing (ft)/2)}^2 \text{(Water Column Height (ft))(7.48 gals/ft}^3)} = \frac{37.58}{\pi \text{(Diam. of Casing (ft)/2)}^2 \text{(Water Column Height (ft))(7.48 gals/ft}^3)} = \frac{37.58}{\pi \text{(Diam. of Casing (ft)/2)}^2 \text{(Water Column Height (ft))(7.48 gals/ft}^3)} = \frac{37.58}{\pi \text{(Diam. of Casing (ft)/2)}^2 \text{(Water Column Height (ft))(7.48 gals/ft}^3)} = \frac{37.58}{\pi \text{(Diam. of Casing (ft)/2)}^2 \text{(Water Column Height (ft))(7.48 gals/ft}^3)} = \frac{37.58}{\pi \text{(Diam. of Casing (ft)/2)}^2 \text{(Water Column Height (ft))(7.48 gals/ft}^3)} = \frac{37.58}{\pi \text{(Diam. of Casing (ft)/2)}^2 \text{(Water Column Height (ft))(7.48 gals/ft}^3)} = \frac{37.58}{\pi \text{(Diam. of Casing (ft)/2)}^2 \text{(Water Column Height (ft))(7.48 gals/ft}^3)} = \frac{37.58}{\pi \text{(Diam. of Casing (ft)/2)}^2 \text{(Water Column Height (ft)/2)}^2}$

S2.5 Casing Volumes Purged Z.19

Total Volume Purged (gals)

bta Within Fulged (gais)						
Time	рН	Turbidity (NTU)	Temp.	Conductivity (µmhos)	Pump Rate (gpm)	Comments
1440			-		1.5	POMP ON CONTROL
						BOX SET AT 350 HZ
1445	7.83	69.0	21.5	453	1.5	WATER CLOUDY
1450	7.79		21.5	467-	<u> </u>	WATER CLOUDY
1455	8.14	34.3	21.2	462	1.5	Waren Closor
1500	0.53	37.0	21.7	465	1.5	WATER CLOSDY
1505	3.07	35,4	21.5	463	1.5	WATER CLOSOY
15/0	3.04	31.5	21.4	463	1.5	WATER CLOSSY
1515	8.0	25.5	21.6	460	1.5	WATER CLOSEY
1520	3.07	15,2	21.3	453	1.5	WATER CLEARING
1525	8.07	7.5	20.5	449	1.5	WATER CLEAR
1530	9.07	4.9	21.0	453	1.5	WATER CLEAR
i533	8.02	4.3	21.1	454	1.5	REMOVED SAMPLE
1535			~		0.02	Key Kences
1540	~		_	_	0:02	Coller MJ-991-065
1541	-					PUMP OFF
1545					~	FED BLANK
						MW-991-200 COURTED
						·
Notes Committee			125	- A- 7 i/	1266	•

Notes Sampling Procedures: PUMP SET AT ZIG TIGS	

	ì		1
Page		of	1

WE	LL D	EVELO	PMEN	IT LOG / Y	WELL SA	AMPLING LOG
Project No Project Nun		1572	.0269		ell Number : Equipment :	MW-8 2"GRHOGS PIMP
•	Date:		23/99		Equipment.	D2-15CE YS1 3500
Site Engi				271/11-1695/22	Contractor :	Nove 13100
		M.Lo				
			Before	Re	eference Point	After
Depth to Water ((ft)		3,97		OF4" CAS,	NG 133.97
Depth to Sedime			2.78	-10	20154" CAS.	76 <u>202.18</u> 2.82
Thickness of Se	diment (f	_	2,82			<u> </u>
Depth of Well (ft	-		os <u>,()</u> 0.333			
Diameter of Cas Water Column H			18.21			
Casing Volume (2) ² (Water Column	Height (ft))(7.48 g	$gals/ft^3) = 44.40$
		.بيم	2.5		Casing Volumes	
Total Volume Pur	rged (gal:				***************************************	T
Time	рН	Turbidity	Temp.	Conductivity	•	Comments
3 \	· .	(NTU)	(C)	(µmhos)	(gpm)	
0730					2.(PUMP ON CONTROL
0735	7.74	2.20	16.4	296	2.1	11/1-00 C(-01
0740	7.22	1.76	16.6	290	2.1	WATER CLEAR
0745	7.00	1.30	17.6	299	7.1	WATER CLEAR
0.750	7.01	1.49	17.3	286	Z.(READY TO SAMPLE
0 755				_	0.02	Fred REDUCED:
		<u></u>				Course MW-991-064
0756						PUMP OFF
						
					A. A	
			·			
						
	<u></u>				(~ = -	
Notes Sampling	Procedu	res:	<u> SE</u>	TAT 40	P. P.P.	
· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	
			<u></u>			
		 			· · · · · · · · · · · · · · · · · · ·	

Page _ l of _ l

WE	LL D	EVELO	PMEN	IT LOG / '	WELL SA	AMPLING LOG
Project Name: JPL Project Number: 1572.0260 Date: 3/23/59 Site Engineer: 3.322477.732244			J27JH -	ell Number : Equipment : Contractor :	MJ-9 2"6wnas Fima DR-15CE; YS1350 NONE	
Depth to Water (Depth to Sedime Thickness of Se	ent (ft) diment (f	70.0			> 0= 4"CAS	
Diameter of Casing (ft) Water Column Height (ft) Casing Volume (gals) = $\frac{30.333}{46.93}$ $\pi(\text{Diam. of Casing (ft)/2})^2$ (Water Column Height (ft))(7.48 gals/ft ³) = $\frac{30.55}{1.88}$ Total Volume Purged (gals)						
Time	рН	Turbidity (NTU)	(℃) Jemp.	Conductivity (µmhos)	Pump Rate (gpm)	Comments
0900	7.70	1.82	17.2	423	2.3	PUMPION; CONTROL
		3 (6)				130X ST AT 195 HZ
0905	6.97	8.48	17.7	452	2,3	WATER CLEAR
0910	6.90	6.62	17,5	435	2.3	WATER CLOSUR
0915	6.95		17.3	433	2.3	Warez Clear
0920	6.95	2.75	17.2	434	2.3	PEROY TO SAMPLE
0925					0.02	Mu. 991-063
0930						- PUMP OFF
					2	
						·
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Notes Sampling	Procedu	ures: <u>F</u>	3 9MC	ET AT 25	BIOC	
	~ ~~~					
·*						
			<u>, , , , , , , , , , , , , , , , , , , </u>			

	ĺ		- 1
Page		of	

WELL DEVELO	PMENT LOG /	WELL SAMPLING	LOG

Project Name:	JPC 1	Well Number :	MW-10
Project Number:	1572.0268	Equipment:	Z"GRUNDES PUMP
Date :	3/22/99	-	DAZ-1505 YS13500
Site Engineer:	J.Branker T. DRPIN-KADGER	Contractor:	Nove

	Before	Reference Point	After
Depth to Water (ft)	85,95	-107 OF 4"CAS, NG	85.95
Depth to Sediment (ft)	153.90	TOP OF 4" CAS, NG	153.90
Thickness of Sediment (ft)	1:10.		1.10

Depth of Well (ft)

Diameter of Casing (ft)

Water Column Height (ft)

Casing Volume (gals) =

155. ΔΔ

0.333

(b7, 95

π(Diam. of Casing (ft)/2)² (Water Column Height (ft))(7.48 gals/ft³) = 1

 π (Diam. of Casing (ft)/2)² (Water Column Height (ft))(7.48 gals/ft³) = $\frac{44.24}{2.48}$

Total Volume Purged (gals)

M. Losi

Otal Volume Fu	igeo (gai	3)				
Time	рН	Turbidity (NTU)	(℃) Temp.	Conductivity (µmhos)	Pump Rate (gpm)	Comments
1135					20	PUMP ON , CONTROL
						Box Set AT 250Hz
1136	7.15	5.31	21.0	C607	2.0	WATER CLEAN
1140	7.15	4.44	20.4	656	7.0	WATER CLEAR
1145	7.11	6.23	Z0.5	663	2.0	WATER CLEAR
1150	7.01	19.0	21-1	665	2.0	DAGE CLEAN
1155	7.12	17.7	Z0,6	650	2.0	WATER CLEAR
1200	7,15	12.2	70.7	645	2.0	WATER CEPAC
1205	7.20	8-06	207	645	7.0	WATER CLEAR
1210	7.24	6.46	21.1	637	2.0	WARDE CURANE
1215	7.24		204	633	7.0	WATER CLEAR
1220	7.25	4.12	20.4	644	7.0	WATER CLEAR
1225	7,22	3,86	20.9	435	2.0	When Com
1225	7.24	3.34	20.8	633	2.0	WATER CIETY
1230	j	1			0,02	RADXE FLIM' COLLECT
•						MW-991-062
1240	_	_	_		0.02	COURT MW-991-061
1241	_	_			*****	PUMP OFF
				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	, 77	•

Notes Sampling	Procedures:_	PUMP	SET AT	92' Broc	•	

oage	 of	
	 v.	-

							Page L of I
WELL DEVELOPMENT LOG / WELL SAMPLING LOG							
Project N	ame:	7	PL	W	ell Number :	MW	-13
Project Nur		157	2.0269				SS PUMP
•	Date :		119/98		-		TS13500
Site Engi	neer:	J.732201			Contractor:	402	
			Before	Re	eference Point		After
Depth to Water (/f t)	1	81.43	-10:5	OF 4"CASIN	ÍЬ	181.43
Depth to Sedime			34.85		OF 4" CASIN		234.85
Thickness of Se		it)	U2 15				0.15
~		7:	35.0				
Depth of Well (ft Diameter of Cas	-		(), 333				
Water Column H		5	53, 42				_ •
Casing Volume (•			/2) ² (Water Column	Height (ft))(7.48 (gals/ft ³) =	34.77
-		2	55	, .	Casing Volumes		1.00
Total Volume Pu	rged (gal	s)	, <u>/</u>			·	
Time	рН	Turbidity	Temp.	Conductivity	Pump Rate		Comments
	Ρ''	(NTU)	(℃)	(µmhos)	(gpm)	~	Minimenta
1005		_			1.4	PUMP ON	, CONTROL BOX
					•	SET AT	1315HZ
1010	8.22		21.8	537	1.4		SL. Cwisy
1015	8.01	10,5	21.7	524	1.4	· · · · · · · · · · · · · · · · · · ·	CLEANGING
1020	7.52	3.0	Z2.3 Z2.4	526 528	1.4		Cicare
1023	7.81	1.0	224	528	1.4	Waren	TO SAMPLE
1031	1	1.0			0.02		F FLOW
1035	-				0.02		M2.991-049
1045	_	~			0.02		12-991-048
1096			_	_	****	POMP	
	<u> </u>						
				 			
	 			<u> </u>			
	 					 	
	 				············		

Notes Sampling	Procedu	ires: P	3 OW	TAT 187	<u> B65</u>		· · · · · · · · · · · · · · · · · · ·
		*					
		ATOH - 1					
							

Page	1	of	Ĺ

WELL	DEVEL	OPMENT	LOG	/ WELL SAM	PLING LOG

WELL DEVELOPMENT LOG / WELL SAMPLING LOG							
Project Na Project Nun [Site Engir	nber : Date :	3/	~0269 23/99 U.T.TUZ			MW-15 Z"GRINDFOS PUMP DIZT-15CE; YSI3500 MONTE	
Before Depth to Water (ft) 3i.40 Depth to Sediment (ft) 74.97 Thickness of Sediment (ft) 0.13			1.40 4.87	700	eference Point PEF 4"CAS PDF 4" CASN	After 16 31.40 16 74.87 0.13	
Depth of Well (ft) Diameter of Cas Water Column H Casing Volume (Total Volume Pur	π(Diam. o	15.0 0.333 13.47 f Casing (ft)/	2) ² (Water Column	Height (ft))(7.48 g Casing Volumes			
Time	рН	Turbidity (NTU)	($\mathcal C$)	Conductivity (µmhos)	Pump Rate (gpm)	Comments	
1100		·			1.8	PUMP ON COMPOL BIX SET AT 139 NZ	
1105	7.22	7.62	18.2	412	1.8	WATER CLEAN	
1110	7,07	7.20	17,5	433	()	WATER CUTAR	
1115	7.0	0.62	17.5	432	1-8	WATER CLEAR	
	7.15	0.62	17.7	431	(-9	READY TO SUMPLE	
1120		0.02	17-1	701	0.02		
1123				•	0,82	Frankos (Suez-	
1130						PUMP OF	
					·	POINT OF	

						·	
Notes Sampling	Procedu	ires:	S gmi	ET AT 3	7' B65		
-							
		· · · · · · · · · · · · · · · · · · ·					

					Page of
LL D	EVELO	PMEN	IT LOG / Y	WELL SA	MPLING LOG
ame :	72	70	W	ell Number :	MW-16
					Z"GRUDGES PLMP
					DIX-15CE : YSI 3800
			MATES	Contractor:	MONE
		1			
			Re	eference Point	After
			100	20/54"CASIA	76 265.0
		8			8
					
; } .		<u> </u>	- N		
ing (ft)	·				
			2) ² (Water Column	Height (ft)\/7.48 a	7als/ft³) = 32.81
(gais) =					gaio/11 / =
rged (gal:	s)	15		3	2,20
	Turbidity	Temn	Conductivity	Pump Rate	
pH	7		1 7 (Comments
			(μπτου)		PUMP ON' CONTIED BOX
				<u> </u>	SET AT 376HZ
8.44	3.11	21.0	507	2,5	WATER COOK
7.51	2.71	21.6	511	2.5	WATER CLEAR
7,50	1.82	20.9	514		WATER COFFEE
7,44	1.74	19.9	514		WATER CLEAR
					WATER CLEAR
1.51	1.01	21, 1	316		PART SAMPLE
				0,02	PROJE Fron' Court
					PUMP OGE
Procedu	ıres:_ = P	JMP 5	F AT 24	>'B6s	
····					
· · · · · · · · · · · · · · · · · · ·					
	ame: nber: Date: neer: (ft) diment (ft) diment (ft) (gals) = rged (gals) 7,53 7,53 7,53 7,53	ame: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SPC 1572.02.68 Date : 31.9199 Sefore 234.52 Date : 234.52 Date : 234.52 Date : 285.0 Date : 285.	ame:	Date :

APPENDIX B

WELL DEVELOPMENT/WELL SAMPLING LOG FORMS,
PIEZOMETRIC PRESSURE PROFILE RECORDS,
AND GROUNDWATER SAMPLING FIELD DATA SHEETS
FOR DEEP MULTI-PORT WELLS

	1		
Page		of	_ 1

WE	LL D	EVELO	PMEN	IT LOG /	WELL SA	MPLIN	G LOG
Project Nan Project Nun [Site Engil	nber : Date :	JPL 1572.00 3/2/199 D.Drekt			ell Number : Equipment : Contractor :	VSI 3560	
Depth to Water (Depth to Sedime Thickness of Se Depth of Well (ft Diameter of Cas Water Column H Casing Volume (ent (ft) diment (f) leight (ft)	* Se	Before Press				After
Total Volume Pur	rged (gal	s)					
Time	рН	Turbidity (NTU)	Temp.	Conductivity (µmhos)	Pump Rate (gpm)		mments
1405	9.73	4.43	22.4	366		Initial RUN	to screens; INITA
1440	-				_	Diranesens e	WIECT MW-991-074
1810	9.60	4.38	21.4	500	_	314 1000 76 52	read of FINAL PARAM.
1535 1400	8.81	4.53	21.7	339	-		SAECH 94; DAITIGE 1800 W - 991-075
1430	5.25	80) 3.53	19.8	325			crean 4. Find Param
Notes Sampling	Procedu	ures:					
	·						
							

FOSTER WHEELER ENVIRONMENTAL CORPORATION Page ____ of ___ WELL DEVELOPMENT LOG / WELL SAMPLING LOG . Well Number: MW-3 Project Name: JPL Project Number: 1572, 0268 Equipment: ys: 3500 Date: 3/3/49 DRT - NCE Site Engineer: D. DINKIN/B. FEINBAUSCH Contractor : <u>Neಖರ್</u> Before Reference Point After * Sec Press Profile SHEETS Depth to Water (ft) Depth to Sediment (ft) Thickness of Sediment (ft) Depth of Well (ft) Diameter of Casing (ft) Water Column Height (ft) π (Diam. of Casing (ft)/2)² (Water Column Height (ft))(7.48 gals/ft³) = Casing Volume (gals) = Casing Volumes Purged Total Volume Purged (gals) Turbidity Temp. Conductivity Pump Rate Time PΗ Comments (C) (NTU) (µmhos) (gpm) IST RUA, THE SLOVEN 3, INTIAL 7. 44 0740 3.18 14.4 364 0800 CULECT SAMPLE MW-941-076 3rd REN CCIEC SAMPLE, FINAL PARAM 7.69 2.28 14.5 182 0821 15 RON TO SCHEAZ, INITIA PARAM. OFFEN 2,15 7.63 14.6 371 red per collect spanie ma -741-977 1000 3rd Rus, Final parameters 2.91 383 7.71 1425 2: -3 DE NO TO SCREEN 1, Frihil 1043 15.6 7,73 4.73 301 7.74 cellet spage mw-991-078 ml Run, Finis / Prameron (400) 1100 164 1115 16.5 6.9 Notes Sampling Procedures:

	í		1
Page_	<u> </u>	of	

						Page of
WE	LL DI	EVELO	PMEN	T LOG / Y	WELL SA	AMPLING LOG
Project N	ame :	JP (W	ell Number :	Mw-4
-			1572.0265		Equipment:	DR-1SCF
-		318			• •	YSI 3500
Site Engi	neer: .	J.Brani	VER B.	FOLDPASSU	Contractor:	NONE
			Before	Re	eference Point	After
Depth to Water	(ft)	* See	PRES	3. PROFICE	SHETS	
Depth to Sedime						
Thickness of Se	diment (ft)				
Depth of Well (ft Diameter of Cas Water Column H Casing Volume (sing (ft) leight (ft)	 π(Diam. o	f Casing (ft)/		Height (ft))(7.48 (gals/ft³) =
Total Volume Pu		•			Casing Volumes	
Time	рН	Turbidity (NTU)	(℃)	Conductivity (µmhos)	Pump Rate (gpm)	Comments
0855	8.34	2.39	1).7	353		PARAMETERS
0920			******			Course Mi-991-068
0945	8.36	2,91	6.9	346		JED PLIN TO SCREW #5, FINAL PARAMETERS
1015	3 .50	3,33	15.5	356		1ST RUN TO SCREW BE ; IN ITIME PARAMETERS
1035	-	- J. J.J	10.7 —	_		
1050	351	2,51	18.6	360		COLECT MW-GAI-OGG 325 DUNTO SCRATT H. 4, FINAL PAREMETERS
						_
1110	8,45	2,92	18.7	337		COURT MW - SPILOTO - OTO 15 OTO 150
1130						340 RIN TO SUEEN # 3,
1145	8.49	1,51	19.1	335		FINITE PARAMETES
1215	7.73	0.98	13.8	347		PARAMETERS I INITIAL
1230		2 2 0:	-	7:0	-	COURT MW-991-072 322 22 TO SEEN & 1:
1245	7.74	238	16.7	319		GNA PARAMETERS
	 					
						·
		. !		1		L
Notes Sampling	Procedu	res:				

	- 1		1
Page		of	1

						Page of 1
WE	LL D	EVELO	PMEN	T LOG / Y	WELL SA	MPLING LOG
Project N	ame :	ر ک	PC	W	ell Number :	Mw-4
Project Nun	nher:	1572	.0268		Equipment:	YS1 3500
10,000,140,1	Date :	3/1	7/99	***************************************		YS13500 Dag-18CE
		J.Bran			Contractor:	
One Engin			1			
		2	Before	P12019CE	eference Point	After
Depth to Water		<u>* 2000</u>	, 1/25:32	1.50.700	-H-C . 3	
Depth to Sedime Thickness of Se						
THICKII 633 OF OE	i) siretino	·				
Depth of Well (ft	t)					
Diameter of Cas						
Water Column F			1 O ! (fr)		11-i-b4 (4)\/7 40 4	
Casing Volume	(gais) =	π(Diam. o	r Casing (π)/	2) (water Column	Casing Volumes	gals/ft ³) = Purged
Total Volume Pu	rged (gal	s)			Odding volumes	. 1.300
Time	рН	Turbidity (NTU)	Temp.	Conductivity (µmhos)	Pump Rate (gpm)	Comments
0915	7.59	6.1	16.2	417	(SP**)	151 PUN TO SUZON # 2; IN ITA
0930	-	<u> </u>				Causer M. 991-072
0945			-			COURT MW 971071 (DJPLGATE) FINAL BUN TO SCIEBN 42; FINAL PARENTES
1050	7.32	16.6	17.4	637		FINAL BUN TO SCREEN 42; FINAL
,						

						,`
Notes Sampling	Procedu	ures:		<u></u>		
	···					
· · · · · · · · · · · · · · · · · · ·						

	1		í
Page		of	

· · · · · · · · · · · · · · · · · · ·	· .						
	 N. 18 S. 18 1	and the management of the second					
VA/EI	 _\/_!	OPMEN	TIOC	/ NA/EI	ICAR	ADI INIC	100
VVEL	 ノヒVにに	OPIVICIN	LUG	/ VVCL	_L JAIV	DELING	LUG

WE	LL D	EVELO	PMEN	T LOG /	WELL SA	MPLING LOG
Project Name: JA Project Number: 1572 0268 Date: 3/5/99			ell Number : Equipment :)	MW-11 XI-3600 DT-15CE		
Site Engir	neer:	D. Du	UKIN .		Contractor:	んのうこ
Depth to Water (Depth to Sedime Thickness of Se	ent (ft)	*	Before	15250 B	eference Point CFIL Sher	After
Depth of Well (ft Diameter of Cas Water Column H Casing Volume (Total Volume Pur	ing (ft) leight (ft) (gals) =	π(Diam. o	f Casing (ft)/	 2) ² (Water Column	Height (ft))(7.48 (Casing Volumes	
Time	рН	Turbidity (NTU)	(℃)	Conductivity (µmhos)	Pump Rate (gpm)	Comments
Ü754	8,39	4,13	15.0	271		1ST RUN TO SCHOOL TWING
0820		_				Canceled Nois -
0902						Carect sorrate inv 491-056
0920	8.99	3.78	17.6	290	-	3rd run to sour F. FINAL PARAM
0950	9.29	1.42	15.8	275	_	1st run to Screen + Initial forum
1015	_	-	-	-		Cullect Sample MW-991-057 grd Run To senich 4- FINN PARM
1650	9,28	253	17.0	287		3rd 12m to seven 4 - FINH PACE
1122	9,16	2.63	19.4	3 4 3		15 RUNTO SCREEN 3 THOUAL PAR
1145		_	_		1	CHEST SAMPLE MOU- 991-058
ROS	5-84	1-04	18:00		/*	3-drunge screen 3, Final Porch
	8.36	293	20.2	234 -		
		1.04				
1238	7,31	12.85	19.2	385	-	promisers.
1250	7.22	12.85	20,5	399		ATTEMPTENT TO REGUL TEMPTED
1322	703	11.84	250	20,700		Tot Run - corper sample mus-991-050
/337	7.19	14.45	20,1	399		4th RUN- FINAL PARAM.
1352	8.56	1.64	19.3	443		15T RW TO SCA.1
14/0	-	_		_		Collect Sample MW-991-066
1425	\$.13	190	18.7	443	_	Til rus, Final parameter
Notes Sampling	Procedu	ıres:				
	·					
					·····	

Page	of	

				······································		Page of					
WELL DEVELOPMENT LOG / WELL SAMPLING LOG											
Project N	ame:	75	² L	w	Well Number: Mルース						
Project Nur		1572	.0268		Equipment:	YS1 3500					
-	Date:	3/	1/99		• •	Dr 156					
Site Engli	neer:	JBIEN	VPL B.	FELD PAUS CH	Contractor:	NONE					
			1								
			Before	Re	eference Point	After					
Depth to Water	(\$4)	_		SS. PIZO							
Depth to Sedime	•										
Thickness of Se		t)		<u>.</u>							
Depth of Well (ft Diameter of Cas	•	4	· · · · · · · · · · · · · · · · · · ·								
Water Column H		***************************************									
Casing Volume (of Casing (ft)/	 2) ² (Water Column	Height (ft))(7.48	gals/ft ³) =					
					Casing Volumes	-					
Total Volume Pu	rged (gal	s)									
Time	На	Turbidity	Temp.	Conductivity	Pump Rate	Comments					
mne	PFI	(NTU)	(C)	(µmhos)	(gpm)	Comments					
0835	7.14	5,03	17.6	360	*******	IST RINTO SCHEENE S; IN MAY					
0905						CX1=0- MW.991-050					
0920	7.16	4.98	17.9	354		BRID RIN TO SCREEN &S FINAL PARAMETERS					
0950	8.01	204	10 7	443		ISTIUN TO SCIEN # 4 WITH					
1010	0.01	3.08	18.2	410		Court Mw-991-051					
1025	7.95	2.67	18.4	409		320 EIN TO SUPERN #4, FINAL					
						1					
1055	7.39	4.62	15.6	385		PARAMENTS, INITIAL					
1115	_					Court MJ-991-052					
1125	8.12	3.69	18,9	395		SW WN TO SUFFINE & S, FAME PARSAMPTES					
11.60	L 52	9 4-	10 0	432		ISTRUM TO SHOW = 2 BUTTON					
1150	7,72	2,45	18.8	443		PARAMETERS					
ins						BURG MW-991-055					
1230	740	1.34	20.7	464		BILD EIN TO SCIETN HZ, FINEL					
					· · · · · · · · · · · · · · · · · · ·						
1255	רהל	31.2	19.1	324		IST RIN TO SUREWILL!" ZHO RIN AFTER RIGING 3,5 GAK					
1430	7,49	7,53	18.8	328	V	I					
1445		0/6	10.0	700	~~~~	QUELT MJ-991-055					
1566	7.15	8.69	18.9	327		ATH RIN TO SHEW # 1 GNAL					
Notes Campling	Dro oodu	<u> </u>									
Notes Sampling	Procedu	res:	M								
		H-11	<u></u>		· · · · · · · · · · · · · · · · · · ·						
											
		, - , - , - , - , - , - , - , - , - , -		······································							

Page	 of	1

					•
WELL	DEVEL	OPME	ENT LOG	/ WELL S	AMPLING LOG

Date : 3/4 9	Project N Project Nur		JPL 1972	. 0268		ell Number : Equipment :	WW-14 VSI-3500	
Site Engineer : D. D. T. (1) FELDPANCH Contractor : NSAS	•					Equipment.	1/2	
Depth to Water (ft) Depth to Sadiment (ft) Thickness of Sediment (ft) Depth of Well (ft) Diameter of Casing (ft) Water Column Height (ft) Casing Volume (gals) = π(Diam. of Casing (ft)/2) ² (Water Column Height (ft))(7.48 gals/ft ²) = Casing Volume Purged Total Volume Purged (gals) Time pH Turbidity Temp. Conductivity Pump Rate (gpm) 0908 \$.59 4.22 16.0 260 — 15 Marie Purged 0918 \$.59 4.22 16.0 260 — 15 Marie Purged 1030 \$.69 2.03 17.9 483 — 20 17.9 483 — 17 Marie Purged 1030 \$.69 2.03 17.9 483 — 18 Marie Purged 1046 \$.40 0.65 18.0 369 — 36 Marie Purged 1046 \$.41 0.65 18.0 369 — 36 Marie Purged 1050 \$.49 1.52 17.7 361 — 18 Marie Purged 1050 \$.49 1.52 17.7 361 — 18 Marie Purged 1050 \$.49 1.52 17.7 361 — 18 Marie Purged 1050 \$.49 1.52 17.7 361 — 18 Marie Purged 1050 \$.49 1.52 17.7 361 — 18 Marie Purged 1050 \$.40 1.5					FEI DBANSUM	Contractor:		
Diameter of Casing (ft) Water Column Height (ft) Casing Volume (gals) = π(Diam. of Casing (ft)/2) ² (Water Column Height (ft))(7.48 gals/ft ³) = Casing Volumes Purged	Depth to Sedim	ent (ft)	<u>** </u>		_			
11110 PH (NTU) (°C) (μmhos) (gpm) 0908 8.79 4.22 16.0 266 — 157 200 15 500 15 16 16 16 16 16 16 16 16 16 16 16 16 16	Diameter of Cas Water Column I Casing Volume	sing (ft) Height (ft) (gals) =	π(Diam. c	of Casing (ft).	 /2) ² (Water Column			
0935 Collect Sample Mar-991-093 1001 8.98 4.53 16.9 275 - SAM Marin Sample Mar-991-093 1030 8.69 2.08 17.9 483 - STAPE MAR-991-0 1055	Time	рН	•				Comments	
1001 8.98 4.53 16.9 275 - 300 1000 1000 10.99 17.9 483 - 300 10.00	0908	8.59	4.22	16.0	268		IST RVN TO SINGEN AST	
1030 8,69 2.03 17.9 483 — 151 Part 50 Series 4, TITIAL 1655 — — — — — — — — — — — — — — — — — —	0935					<i>p</i>	Collect temple ma-991-043	
1655 — — — — — — — — — — — — — — — — — —	1001	8.98	4.53	16.9	275		to sometime time parametries	
1655 — — — — — — — — — — — — — — — — — —	1420	76 (-0	7 00	1 0	6/5-		1ST Par To Seman 4, TOTTIBLE	
1117 8.52 2.66 18.0 369 — 368 7 SERENTY TO SERVENT 23, IN 1146 8.46 6.65 18.0 856 — 157 Jun To SERVENT 23, IN 1269 — — — — — 2ml Non, Christ mw. 941.00 1223 8.44 1.52 17.7 361 — 3rd Ren, To Servent 35 Fro 1250 8.45 4.72 18.4 1059 — 1059 — 105 parties of Servent 2, Institut 1305 — — — — — — — 1059 — 2ml Ren, Collect Sangula manifeld 1309 8.22 4.73 17.8 1060 — 3rd servent 6 Servent 7, First 1353 8.15 4.83 17.3 1085 — 155 Res To Servent, Institut 1415 — — — — — — 155 Res To Servent, Institut 1415 — — — — — — 155 Res To Servent, Institut 1415 — — — — — — — — — — 155 Res To Servent, Institut 1415 — — — — — — — — — — — — — — — — — — —		0,61	-	17.5	- ' 3 3			
1269		5.52	2.66	18.0	369		3 Colar to Season of final	
1269	146	846	0.65	18.0	856	~ .	18T in To School 23, INTIVE	
1223 8.44 1.52 17.7 861 - PROMINE TO SCHOLL AS FIRM 1250 8.45 4.72 18.4 1059 - Brand To Scholl To Thirth 1305		-		-	_	-	Part Run, Christ mw- 941-045	
1305		8.44	1.52	17.7	3Ci	J	Advances of Screen AS FINDL	
1305 2nd Rei, Collect Sangile Francis 1329 3.22 4.73 17.8 1060 - Seid son To Seven 2, Final 1353 8:15 4.83 17.3 1095 - 155 Ris To Seven 1, Interes 1415 2nd Rein, Collect Sangile Moved	250	8.45	472	18,4	1059		DE PUR TO SURENZ, INTIM	
1329 3.22 4.73 17.8 1060 - Sent for Seven 2, Final 1352 8.15 4.83 17.3 1085 - 155 Rus 10 Seven 1, Intelled 1415		_			_	_	2nd Run Collect Sansola Men signal	
1415 2nd Run, conect simple more		3.22	4.73	17.8	1060	_	3nd sin to scienz, Final projection	
1415 Ind as , conect simple more	753	8:15	4,83	17,3	1095		1ST Rus To Screen (, Instead	
1436 7.95 4.56 18.0 1107 - 3-1 Run Te Servent Final		-	_	-	-		and Run, correct simple mur-491-	
		7,95	4.56	18.0	1/07		3-1 Run Te Screen/ Final	
Notes Compling Descributes	-t O!	Descri	·		1			
Notes Sampling Procedures:	otes Sampling	Procedi	ıres:					
								

Page ____ of ___

WE		EVELO	PMEN	IT LOG /	WELL SA	AMPLING LOG
	mber : Date :		99	W	fell Number : Equipment : Contractor :	VSE-3530 Det - 15 CE
Depth to Water of Depth to Sedimon Thickness of Sedimon Depth of Well (ft Diameter of Cast Water Column Housing Volume (ft Diameter Column Housing Volume (f	ent (ft) ediment (f t) sing (ft) Height (ft)	it)		2550RE <u>P</u> R		gals/ft³) =
Total Volume Pu	rged (gal	s)				. 1.930
Time	рН	Turbidity (NTU)	Temp.	Conductivity (µmhos)	Pump Rate (gpm)	Comments
0930	6.61	1798 178	16.2	367		IST NUM TO SCREENS, INSTINC AMON
/000	8.02	125	13.0	337		2nd Ray - often, sing to reduce
1055 1125 1200	8.02 - 7.77	4.78 - B.8	13.8	195- - 351		CORP MAY 99 - 037 351 FOR TO SCHOOL 4, Find Paran
1235	7,58	1.03	14.3	309		corett sample mu-191-134
1320	7.43	1,15	14.0	164		3rd run To sover 2, First porem.
1340 1400 1420	7.40 — 7.34	1.54 - 1.49	2 4.9 - 14.1	287 — 149		Collect Simple mw-491-040 3d An To Screen, final
Notes Sampling	Procedu	ıres:				

Project I Project Nu					TTLL OF	AMPLING LOG
•	Name:	JP	<u>'</u> L	W	ell Number :	MW-17
		1572.	0268			DRT-ISCE
	Date:		5199		• •	YS1 3500
Site Eng	jineer :	J.Brann		DYES	Contractor:	Mort
			Before		eference Point	After
Depth to Wate		<u>*</u> S	AF Y	255. P20	ace sike	
Depth to Sedir						
Thickness of S	seaiment (11	()		<u> </u>		
Depth of Well ((ft)	Secretary and the second				
Diameter of Ca	asing (ft)					
Water Column						
Casing Volume	(gals) =	π(Diam. of	Casing (ft)/	²) (Water Column		gals/ft ³) =
Total Volume P	urged (gals	3)			Casing Volumes	Purged
· · · · · · · · · · · · · · · · · · ·	1	Turbidity	Temp.		Duma Data	
Time	pH	(NTU)	(C)	Conductivity (µmhos)	Pump Rate	Comments
1100	9.31	12.4	14.8	357	(gpm)	IST RINTO SUETW # 5; INITH
1135	9.25	39,3	14.7	361		ENDIUN ATTEMPTING TO 12000 TO 12000
1100						+)23.13.Fr
1330	8.30	23.5	16.2	# 362		BEPILIN TO SCIEN #5 APTER
1400						Course MW 991-036
145	9.25	117.60	4.9	355		FINAL PLANTO SCIEDAS
	1		······			
	1					
	4					
			~···~			

		<u> </u>				<u> </u>
tes Samplino	g Procedu	res:				

WELL DEVELOPMENT LOG / WELL SAMPLING LOG									
Project N	ame:	JP	١ــ	W	ell Number :	MW-17			
Project Nur	nber:	1572	0268		Equipment:	DI2T-15C=			
-		3/1				YS1 3500			
		J.B120~			Contractor:	Mone			
Before Reference Point After Depth to Water (ft) Depth to Sediment (ft) Before Reference Point After									
Thickness of Se		t)							
Depth of Well (ft) Diameter of Casing (ft) Water Column Height (ft) Casing Volume (gals) = π(Diam. of Casing (ft)/2) ² (Water Column Height (ft))(7.48 gals/ft ³) = Casing Volumes Purged									
Total Volume Pu	rged (gal	s)	······································						
Time	рН	Turbidity (NTU)	Temp.	Conductivity (µmhos)	Pump Rate (gpm)	Comments			
0900	છ.ગગ	6.23	15.2	30E		PAKAMENS 3, INITIAL			
0930						COURT MW. 991-038 FINAL RINTO EXCEPT #5, FINAL PARAMETERS			
1050	8.62	12.09	17.7	351		PARAMETERS, FINAL			
1110				•		RESOMRE MW 991-040 *			
						FOR MOCS OWLY AT			
						SCHOOL #1			
	:								
		·							
•									
				<u></u>					
						· · · · · · · · · · · · · · · · · · ·			
						- A CONTRACTOR OF THE STATE OF			
Notes Sampling	Procedu	ıres: * ເ	25547	Etoc Vocs &	T MW-17	-1 DJF TO PROB.			
	· · · · · · · · · · · · · · · · · · ·					BURANORY - SAMPLES			
		<u> </u>	85720V	(=> love, Gir	ums>				

_	ſ	
Page	<u> </u>	of

WELL DEVELOPMENT LOG / WELL SAMPLING LOG

Project Nam Project Num E Site Engir	nber : Date :	JPL 1572.0 2/24 J.Brann	199		ell Number : Equipment : Contractor :	MW-19 75,3500 DRT-15CF NONE		
Depth to Water (ft) Depth to Sediment (ft) Thickness of Sediment (ft) Before Reference Point After								
Depth of Well (ft) Diameter of Casing (ft) Water Column Height (ft) Casing Volume (gals) = π(Diam. of Casing (ft)/2) ² (Water Column Height (ft))(7.48 gals/ft ³) = Casing Volumes Purged Total Volume Purged (gals)								
Time	рН	Turbidity (NTU)	(℃)	Conductivity (µmhos)	Pump Rate (gpm)	Comments		
1010	7.38	198	19.6	Z90	-	INITION PARAMATES		
1030						CN (35 MW-961-031		
1110	7.50	3.06	21.2	305		30 KIN TO SCIETN #5.		
	0.00	200	70.0	700		IST WIND SCIEN #4" IN THE		
1150	8.25	2.67	Z0.3	<u> 38</u> 8		PARCONTOSCEN #4: INITIAL		
1210						COLEZ HW 991-632		
1210						COLLET MW-991-0321/5 PETTIN		
1210	120	76	21 -	345		COLLET MW. 991-032 MSD		
1240	831	2.81	21.0	543	•	FINAL PARAMETERS		
1305	815	1.19	19.6	443		IST RINTO SCIEGN & 3, INITIAL TAKEPHETELS		
1330	0.13	-1.1	صابات	713				
1335	7.98	1,33	ZO.(454	-	COLECT MW - 911 - 033 300 WH TO SCEW # 3, FNAL TACANTERS		
1000	1,10	در،۱	ω, (44		TAKAMETENS		
1/400	7.81	2.71	20,2	400	-	15 PULL TO SEPENH Z; INITHE		
1425	1,00	<u> </u>	<i>ω,</i> ε	406		THE WAR		
1435	7.52	2.90	19.9	413		320 PM TO SUFFEN # 2' FINAL		
14.55	1174	2.10	75.7	9112		The American		
1500	7,69	0.61	70.7	326		15T ON TO SCIENT I INMA		
153	1,01	0.01	ادمن			COLLECT MUN .991-035 300 PUNTO SCIENTAL; FINAL		
15to	7.52	0.17	19.2	3,7		300 RINTO SCIENTAL FAME		
1210	1.76					-ZAZAMETAZS		
Notes Sampling	Procedu	roc:						
votes camping	i ioceat							

	1		1
Page	1	of	

				······································		Page of
WE	LL D	EVELO	PMEN	IT LOG /	WELL SA	AMPLING LOG
Project N	ame:	75	<u>, </u>	 W	ell Number :	MW-19
Project Nur		1572	0265		Equipment:	YS13500
•	Date:	2/2	6/99		• •	DRG-18CE
Site Engi	neer:	J.302NN		FLOPASSIA	Contractor:	NONE
33			7			
		·	Before	R	eference Point	After
				35. PROS		
Depth to Water Depth to Sedime	• •				24-0	
Thickness of Se	• •	t)		•		
	,	,				•
Depth of Well (ft	-	······································				
Diameter of Cas						
Water Column F Casing Volume	• • •		f Casing (ft)	 /2) ² (Water Column	Height (ft))/7 48	nale/ft ³) =
Casing volume	(94.5) =	MD ICHII. O	· odomig (m)	z, (viaioi ooidiiii	Casing Volumes	-
Total Volume Pu	rged (gal	s)			•	•
		Turbidity	Temp.	Conductivity	Pump Rate	0
Time	pН	(NTU)	(°C)	(µmhos)	(gpm)	Comments
0900	7.8%	4.37	16.4	407		1ST RINTO SCIDEN # 5; INITURE PARCAMETERS
0930			_	_		
0945	7.76	3,90	16.4	403	•	COURT MW-991-026 BAD RIN TO SUREN 45, FINA PARAMERES
	6 30	400	177.0		:	IST PAIN TO SUPEN # 4: (1) OA
1015	8.27	4.38	17.2	356		TARREST MAN COCK - 127
1045	8.31	3.73	17.5	368		COULT CT MW-991 - 027 320 RIN TO SCREEN #4 FINAL PARAMETRALS
1100	0.51	2, 0	11.2	300	<u> </u>	TAKEN STORES
1170	70	4.11	19.3	963		IN RIN TO SECTION #3;
1150		-				COLLET MW-991-0281
1150	-					-025MS -025MSD
1210	7.42	4.56	13.6	884		FINAL PARAMETERS
(250	100	261	162	10-	· · · · · · · · · · · · · · · · · · ·	IN MAL PARAMETERS
1320	6.97	3,94	15.3	460		
1335	6.57	23.20	18.5	455		COURT MW-991-029 300 MINTO SCIENTEZ FORM FORMANCES
		7			**************************************	!
1405	7.51	4.99	18.6	261		IN IDEN PAKAMETES
1420						(NIST M. 1-991-03)
1445	7.53	48.1	17.3	248		3 80 RIMTO SULTON BY FINAL
						<u> </u>
Natas Camplina	Descent			1		<u> </u>
Notes Sampling	Procedi	ıres:				
			A			199000 100 100 100 100 100 100 100 100 1
				· · · · · · · · · · · · · · · · · · ·		organica quantità de la compania de
		04		***************************************	· · · · · · · · · · · · · · · · · · ·	

						Page of				
WELL DEVELOPMENT LOG / WELL SAMPLING LOG										
Project N	ame :	JF	2	W	ell Number :	MW-20				
Project Nur		1572.0	268		Equipment:	Det-15CE				
•	Date :		5199			YS1 3500				
]				ELDP21SCH	Contractor:	NONE				
0.00 2.19										
			Before	Re	eference Point	After				
Depth to Water	(ft)	* 5€	F PRE	S PROFILE	= SHEETS	>				
Depth to Sedim	• •									
Thickness of Se	diment (fl			·-						
Depth of Well (ft	t)									
Diameter of Cas	sing (ft)			-, -						
Water Column F	•				11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Casing Volume	(gals) =	π(Diam. o	if Casing (π)/	2) (Water Column	Casing Volumes	gals/ft ³) =				
Total Volume Pu	ırged (gal:	s)			Casing Widines	r drysd				
		Turbidity	Temp.	Conductivity	Pump Rate	0				
Time	pH	(NTU)	(°C)	(µmhos)	(gpm)	Comments				
0920	B.94	1.02	15.9	290		IST RUN TO SCREEN # 5				
1000	-					COLLECT MW-991-021				
1020	8.51	1.67	16.7	302		BON RUN TO SUREN #5 FINAL PARCAMETERS				
	0.41	- 00	17.	701		IST RIN TO SCHOOL 44!				
1105	8,44	0.83	17.2	294		INITION PARAMETERS				
1130	8.41	1 / 0	17.5	290		SAP ZIN TO SULEDN H 4.				
1150	D.41	1.68	11.2			MARL PARENTES				
1225	8.45	0.10	i7.3	410		IST IWN TO SUCEN # 3;				
1230	-				1	- 023MSD (For Yes and Methys)				
1310	8.43	0.28	18,0	424		BOY RIN TO SCHOOL #3'				
						197 RAY TO SCIENT #21				
1335	237	0.79	<u>17.4</u>	330		INITIAL PARAMETERS				
1400	-	2):				BRE PUNTO STERN # 2				
1415	7.92	0.48	17.5	356		FIRM PARAMETERS				
1440	7.65	0.51	17.8	(055		IST IWN TO SCIETN & 1. IN IT AL PROMINGS				
1500	7.60			_	_	COLLEG MW-991-025				
1515	7.51	0.92	17,7	679	-	3.20 RIN TO SUETN # 1.				
						<u> </u>				
Notes Sampling	Procedu	ıres:								
			_							
1										

	i		. (
Page		of	1

				· · · · · · · · · · · · · · · · · · ·		Page of
WE	LL D	EVELO	PMEN	IT LOG / \	WELL SA	AMPLING LOG
Project N	lame :	JPL		W	ell Number :	MW-21
Project Nu		1572.	0265		Equipment:	YS1 3500
•	Date:	3/1	6199			DR-1865
Site Eng	ineer :	J.320V	NEW. E.	MAYER	Contractor:	NONE
	······································	1/	Before		eference Point	After
Depth to Water	(ft)	* 5	PR	735. PROG	ue SHE	3
Depth to Sedim	ent (ft)					· ·
Thickness of S	ediment (ft	.)				
Damela at Mall (fa \					
Depth of Well (in Diameter of Ca	-					
Water Column	•	****		Language .		
Casing Volume		π(Diam. o	f Casing (ft)/	2) ² (Water Column	Height (ft))(7.48 (gals/ft ³) =
	(3 /	.,	3(,	, ,	Casing Volumes	
Total Volume Po	urged (gals	s)			-	•
—	T T	Turbidity	Temp.	Conductivity	Pump Rate	
Time	pH	(NTU)	(C)	(μmhos)	(gpm)	Comments
0900	9,34	4.29	15.1	701	(95)	IST PUN TO SCHEEN # 5'
0920	100.5-F	-	127	701		Ouer-Mw.991-016
0940	7.90	17.7	15.6	708		360 8UN TO SUZEN #5'
<u> </u>	1			,,,,,		FNO PREMIES
1000	791	13.1	13.4	553	·	IN DIN TO SUGEN HA!
1020						COLUCT MW-991-017
1045	7.53	19.07	15.3	593		SAP RIN TO SURANI HA
1110	7.54	4.16	16.8	863		INITIAL PARAMORS
1125					-	QUELT MW-991-018;
参						-01875 -018750
1150	7.32	197	17.7	896		5RD RUN TO SCREEN 43
			10 3	1 - 72		IST ON TO SUSTEN SEE
1210	7.42	0.04	18,3	1036		INTERNATO SUPERIALES
1225	7	<u> </u>		1 0 1		BUEZT MW-991-019 3/10/10/10 SCHERW #2
1295	7.37	0.09	18.6	1041		5/45/2/17 /0 22/2011 - 2
1205	1. 010	M 17	ind	757		BTIWN TO SCIETU H !
1305	6.96	0.17	17.4	757		INIT OF PARAMETERS
1315	1	V 13	10-	700		30> RANTO BREEN #1/ FAME
1340	6.61	0.13	185	765		Donamar ; MAIL
latas Committee	Dec = = = =	· · ·				
lotes Sampling	Procedu	res:				
				,	······································	

	- (1
Page		of	ı

WE		_, /		T 1 00 /1	A/ELL OA	NADI INIO I OO
	LL D					MPLING LOG
Project N	Project Name:			ell Number :	Mw-22	
Project Nu	mber:	1572	.0WS		Equipment:	DRT-15CE
	Date:	310	1/99			YS1 3500
Site Ena	ineer:	1.B(2)	NEZ: B	.FOLDPANSCH	Contractor:	Nove
		i	Before	Re	eference Point	After
Donth to Motor	· (4·\	* Se	E PR	55. Profic	E SHEET	5
Depth to Water Depth to Sedim						
Thickness of S	• •	t)				
	-annone (i	·/				
Depth of Well (ft)	****		<u></u>		
Diameter of Ca	-					
Water Column						
Casing Volume			f Casing (ft)	² (Water Column	Height (ft))(7.48 g	gals/ft ³) =
					Casing Volumes	Purged
Total Volume Pr	urged (gal	s)				
		Turbidity	Temp.	Conductivity	Pump Rate	
Time	pH	(NTU)	(C)	(µmhos)	(gpm)	Comments
0015	(2 ste			,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	(9511)	IST WAY TO SYSTEM #5; WITH
0845	849	4.63	18.1	345		COURT MW-591-011
0915	7.62	7 .2	11 2	332		ハラレニアー じゅうナルー しノロ
0930	8.53	Z.03	16.2	596		3MDIZIN TO SCIZEN 45
				 		BNAL PARAMORES
2 6 3 3 -	1-20	<i>E</i> 13				BURL PACEMORES
1010	7.47	5, 13	17.7	318		BARLY TO SCIETULES, FINAL PAREMETERS, 1ST INN TO SCIETULE & INITIAL PAREMETERS
1030				318		137 PAN TO SCIETN HE INITIAL PARAMETERS. COLECT MI - 991-012
	7.47 - 7.34	5, 13 — A76	17.1			137 PAN TO SCIETN HE INITIAL PARAMETERS. COLECT MI - 991-012
1030	7.34	- 476	16.3	318 314		SMORIN TO SCIETN 45. FINAL PARAMETERS. 1ST ION TO SCIETN 84 IN ITAL PARAMETERS COLECT MI-991-012 3AD ION TO SCIETN 44. FIN
1030		- 476		318		SMORIN TO SCIETN HS. FINAL PARAMETERS. 1ST INN TO SCIETN HQ. INITIAL PARAMETERS. COLLECT MN-991-012 3PD INN TO SCIETN HQ. FIN PARAMETERS. IST INN TO SCIETN H3. IN IT AN PARAMETERS.
1030	7.34 7.49	 476 5,19	17.5	318 314 437 		SMORIN TO SCIETN HS, FINAL PARAMETERS, 137 INN TO SCIETN HA! INITIAL PARAMETERS COLLECT MIS-991-012 3AD INN TO SCIETN #4: FINA 1ST INN TO SCIETN #4: FINA IN IT AN PARAMETERS CHIEST MIS PARAMETERS
1030	7.34	- 476	16.3	318 314		SMORIN TO SCIETN HS, FINAL PARAMETERS, 137 INN TO SCIETN HQ, INITIAL PARAMETERS COLLECT MI - 991-012 320 INN TO SCIETN HQ, FIN PARAMETERS IN IT AN TO SCIETN HQ, FIN IN IT AN PARAMETERS CHIER MI SPI-013
1030 1050 1115 1130	7.34 7.49	 476 5,19 4.63	17.5 17.5	318 314 437 443		SMORIN TO SCIETN HS. FINAL PARAMETERS. 13T INN TO SCIETN HQ. INITIA PARAMETERS COLECT MIS-991-012 3PD INN TO SCIETN #4. FIM 1ST INN TO SCIETN #4. FIM 1ST INN TO SCIETN #3. COLECT MIS PARAMETERS COLECT MIS PARAMETERS SAPRIN TO SCIEDN #3. FINA PARAMETERS.
1030 1050 1115 1130 1150	7.34 7.49	 476 5,19 4.63	17.5	318 314 437 443		SMORIN TO SCIETN HE INITIAL PARAMETERS COLLECT MIN-991-012 3PD INN TO SCIETN HE INITIAL IST INN TO SCIETN HE INITIAL INITIAL PARAMETERS COLLECT MIN-971-013 3PD RUN TO SCIETN HE INITIAL IST INN TO SCIETN HE IN TO SCI
1030 1050 1115 1130 1150	7.49 7.48	 476 5,19	17.5 17.5	318 314 437 443		SMORIN TO SCIETN HS, ENGL PARAMETERS, 13T ION TO SCIETN HQ INITIAL PARAMETERS COLECT MIN-991-012 3PO ION TO SCIETN #4, FIM 1ST ION TO SCIETN #4, FIM 1ST ION TO SCIETN #3; INITIAL PARAMETERS 1ST ION TO SCIETN #3; INTO TO SCIETN #3; INTO TO SCIETN #2; INTO TO SCIETN #4; INTO T
1030 1050 1115 1130 1150 1210 1315	7.48 7.48 7.48 7.48	 476 5,19 4.63	17.5 17.5	318 314 437 443		STORINTO SCIETNIUS: FINAL PARAMETERS: 13T INN TO SCIETNIUS: COLECT MIN-991-012 3PD INN TO SCIETNIUS FINAL 1ST INN TO SCIETNIUS FINAL 1ST INN TO SCIETNIUS LINITAL PARAMETERS 1ST INN TO SCIETNIUS TRACAMETERS 1ST INN TO SCIETNIUS FINA TRACAMETERS 1ST INN TO SCIETNIUS 1ST INN TO SCIETNIUS 1NT IN TO SCIETNIUS 1NT INN PARAMETERS LINITAL PARAMETERS COLECT MIN-991-014
1030 1050 1115 1130 1150	7.48 7.48 7.48 7.48	 476 5,19 4.63	17.5 17.5	318 314 437 443		STORINTO SCIETNIUS: FINAL PARAMETERS: 13T INN TO SCIETNIUS: COLECT MIN-991-012 3PD INN TO SCIETNIUS FINAL 1ST INN TO SCIETNIUS FINAL 1ST INN TO SCIETNIUS LINITAL PARAMETERS 1ST INN TO SCIETNIUS TRACAMETERS 1ST INN TO SCIETNIUS FINA TRACAMETERS 1ST INN TO SCIETNIUS 1ST INN TO SCIETNIUS 1NT IN TO SCIETNIUS 1NT INN PARAMETERS LINITAL PARAMETERS COLECT MIN-991-014
1030 1050 1115 1130 1150 1210 1315	7.48 7.48 7.43 7.50	 476 5,19 4.63 90.1 8.1	17.5 17.5 17.5 17.7	318 314 439 443 582 579 632		SMORIN TO SCIETN HE INTO FRANCE PARAMETERS. 13T FOUN TO SCIETN HE INTO PARAMETERS. COLLECT MN-991-012 3PD ION TO SCIETN HE INTO PARAMETERS. 1ST FOUN TO SCIETN HE S. 1NITION PARAMETERS. COLLECT MN-991-013 1ST FOUN TO SCIETN HE Z. 1ST FOUN TO SCI
1030 1050 1115 1130 1150 1210 1315 1330	7.48 7.48 7.43 7.50		17.5 17.5 17.5 17.7	318 314 437 443 582 577		SMORIN TO SCIETN HS; FINAL PARAMETERS; 13T IDN TO SCIETN HQ: INITIAL PARAMETERS COLECT MIN-991-012 3PD IDN TO SCIETN HQ: FINA 1ST IDN TO SCIETN H3; INITIAL PARAMETERS 1ST IDN TO SCIETN H3; GINA PARAMETERS 1ST IDN TO SCIETN H3; GINA TRACOMETERS 1ST IDN TO SCIETN H2; INITIAL PARAMETERS COLECT MIN-971-014- 3PD IDN H SCIETN H2; FINAL PARAMETERS; INITIAL PARAMETERS; COLECT MIN-971-014- 3PD IDN TO SCIETN H2; INITIAL PARAMETERS;
1030 1050 1115 1130 1150 1210 1315 1330 1350	7.43 7.43 7.43 7.43 7.50 7.25 6.75		17.5 17.5 17.7 17.9 18.4	318 314 437 443 582 579 632 983		STORINTO SCIETN HS: FINAL PARAMETERS: 137 PUN TO SCIETN HQ: INITIAL PARAMETERS COLLECT MW-991-012 300 PUN TO SCIETN HQ: FINITIAL PARAMETERS 157 PUN TO SCIETN H3: FINA PARAMETERS 157 PUN TO SCIETN H3: FINA PARAMETERS 157 PUN TO SCIETN H2: INITIAL PARAMETERS COLLECT MM-971-014 300 PUN APTOL PURCHING INITIAL PARAMETERS: ZNO PUN' APTOL PURCHING
1030 1050 1115 1130 1150 1210 1315 1330 1350 1430	7.48 7.48 7.48 7.43 7.50		17.5 17.5 17.5 17.7 17.9 18.4	318 314 439 443 582 579 632		SIDELY TO SCIETN HS. FINAL PARAMETERS. 13T IDAN TO SCIETN HS. INITIAL PARAMETERS COLLECT MIS-991-012 3PD IDAN TO SCIETN HS. FIM. 1ST IDAN TO SCIETN HS. FIM. INITIAL PARAMETERS 1ST IDAN TO SCIETN HS. FIM. THE PARAMETERS 1ST IDAN TO SCIETN HS. FIM. THE PARAMETERS COLLECT MIS-971-014 3PD IDAN TO SCIETN HS. INITIAL PARAMETERS. COLLECT MIS-991-015 USING. COLLECT MIS-991-015 USING.
1030 1050 1115 1130 1150 1210 1315 1330 1350	7.43 7.43 7.43 7.50 7.25 6.75		17.5 17.5 17.7 17.9 18.4	318 314 437 443 582 579 632 983		STORINTO SCIETN 45: FINAL PARAMETERS: 137 PUN TO SCIETN # 4: INITIAL PARAMETERS COLECT MIN-991-012 300 PUN TO SCIETN # 4: FINI 1ST PUN TO SCIETN # 3: INITIAL PARAMETERS 1ST PUN TO SCIETN # 2: INITIAL PARAMETERS 1ST PUN TO SCIETN # 2: INITIAL PARAMETERS COLECT MIN-991-014 300 PUN APPOL PURCHING INITIAL PARAMETERS: INITIAL PARAMETERS: COLECT MIN-991-014 300 PUN APPOL PURCHING INITIAL PARAMETERS ZNO PUN' APPOL PURCHING

Notes Sampling Procedures:			
	····	····	·

WE	LL D	EVELO	PMEN	IT LOG /	WELL SA	AMPLING LOG
Project N Project Nur I Site Engi	mber : Date :	3/1	1263 1199		ell Number : Equipment : Contractor :	MW-23 YS13500 DRT-15CE NONE
Depth to Water (Depth to Sedimor Thickness of Se Depth of Well (ft Diameter of Cas Water Column H Casing Volume (ent (ft) diment (ft) sing (ft) Height (ft) (gals) =	π(Diam. o		35 P20 <u>6</u>		gals/ft ³) =
Total Volume Pu	rged (gal	•		T		T
Time	рН	Turbidity (NTU)	(℃)	Conductivity (µmhos)	Pump Rate (gpm)	Comments
0855	3.97	3.19	158	457		PARATETERS
0920						Collet Mw. 491-006
0940	9.30	2,19	17.3	470	•	PARAMETERS
1005	7.75	5.07	17.7	33>		IST RUN TO SCIEN #4; INITIAL PARAMETERS
1020	-	<u> </u>				
1045	7.55	3.34	11.	7.20		COLLECT Mid-991-007
1040	1.0	3.34	16.1	320		FINAL PARAMETERS
1105	7.51	4.31	17.3	421	*****	IST PON TO SUBON #3, INITIAL
1130	-		''.'			COLLECT MA-911-008
						-008MS +10 -000MSD
1150	7.32	4.73	16.7	423	•	300 BUNTO SUPERNA S, FAR
			100	•	***************************************	TAZAMETES .
1215	6.92	2.53	16.6	892	*	PARMOTERS
1230	-	-	-	_		COURT MW. 991-009
1245	7.01	190	17.9	904		3 RO PUN TO SURGEN #2 FINE
					······································	
1300	6.54	4.24	17.5	<u> </u>		PAR METERS TO INTIME
1315		-7 23				Courer MJ 991-010
1330	693	373	17.3	917	-	300 PUN TO SUREN #1;
lotos Camplina	Drood		ا ــــــــــــــــــــــــــــــــــــ			·
Notes Sampling	rioceau	res				
					· · · · · · · · · · · · · · · · · · ·	
	,					

Page ____ of ___

WE	LL D	EVELO	PMEN	IT LOG /	WELL SA	AMPLING LOG
	mber : Date :	157	C 2.02GE 18/99 EN DI	3	ell Number : Equipment : Contractor :	MJ-24 DerusCe 751 350 NONE
Depth to Water Depth to Sedime Thickness of Se Depth of Well (for Diameter of Case Water Column For Casing Volume)	ent (ft) ediment (f t) sing (ft) Height (ft)	* See		7201€ <u>S#</u> 		<i>After</i>
Total Volume Pu	rged (gal	s)				
Time	рН	Turbidity (NTU)	Temp. (℃)	Conductivity (µmhos)	Pump Rate (gpm)	Comments
1410	837	34.5	22,2	419		PSASSING APPEN I PACKET
						VOWME
1425	9.25	57.3	21.3	423		COUTET MW-991-003
Notes Sampling	Procedu	ires:				

Project N	lame .	750		w	'ell Number :	MW-24
Project Nui		1572.0				D127-15C=
•	Date:		2199		Equipment.	YS1-3500
				CA - 20 XI H	Contractor :	NONE
Oilo Erigi		-158Z), C	7	74.7-200	CONTRACTOR .	140/46
		•	Before		eference Point	After
Depth to Water		* SEE	P12=35	, PROBLE	SHARTS	
Depth to Sedim						
Thickness of Se	∍diment (fi	t)		•		
Depth of Well (f			····			
Diameter of Cas						
Water Column I			1 Occion (#)		11-1-ba #01/7 40 .	
Casing Volume	(gais) =	π(Diam. or	Casing (II)	/2) (Water Column	Height (ft))(7.48 (Casing Volumes	gals/ft ³) =
Total Volume Pu	ırged (gal:	s)			Odding foldings	ruiged
Time	7	Turbidity	Temp.	Conductivity	Pump Rate	Commente
lille	рН	(NTU)	(C)	(µmhos)	(gpm)	Comments
0845	8.25	46,7	17.8	370		IST PAN TO SCHOOL #5, INITIAL PARRAMETERS
0915	7.70	5.70	18.8	374		ZMOIZN TO PROJET TURBINITY
0935						Caiff Mw-991-001
1010	7.55	4.71	18.6	371		ATT RIN TO SCIETY # 5' FINT
laic	107/		16.7	201		IST BY TO SCIEN #4, WITH
1045	9,74	6.1	19.2	321		Cours Mw. 971-002
1130	8.32	57	19.9	326		BUT DIN TO SUCEN #4
1100	1 Cev-	7/	1 0 1			Franco Paranta
	1					
	1			<u> </u>		
	1				<u> </u>	
•						
	1					
	+					
	+					
	1					
Notes Sampling	Procedu	ıres:				
						

	(
Page		of	_

WELL DE						
		31.3R.A		\A/E	C A B A D I	
VVEI I I T	~~.	J == 11/1	 /	V/V == 1	5 /11/11/11	11316 = 1 / 3/2
** 		<i>-</i>	 	** ** *** ***		

Project N		JP			ell Number :	MW-24				
Project Nur			.0265	<u> </u>	Equipment:	DR-1908				
	Date:		31,7/99 YS13500							
Site Engi	neer:	J.BRENI	Ver'I.1	19455	Contractor :					
Before Reference Point After Depth to Water (ft) X SEE Press Press Press										
Depth to Water (•	* >	t rae	33 P.20	<u> 15 54</u>	= = = = = = = = = = = = = = = = = = = =				
Depth to Sedime			 							
Thickness of Se	diment (f	t)								
Depth of Well (ft	,									
Diameter of Cas	-	· · · · · · · · · · · · · · · · · · ·								
Water Column H				·						
Casing Volume ((gals) =	π(Diam. c	f Casing (ft)	(2) ² (Water Column	Height (ft))(7.48 (gals/ft ³) =				
					Casing Volumes	Purged				
Total Volume Pu	rged (gal	s)								
Time	рН	Turbidity	Temp.	Conductivity	Pump Rate	Comments				
THITC	pi.	(NTU)	(C)	(µmhos)	(gpm)	Comments				
1230	7.96	121.5	191.1	43		INTRAL BYZAMETERS				
						* WILL PENEN LATER				
1250	8.55	4.17	18.6	351		INITIAL PARAMETERS				
1320						GOLIEGY MJ. 991-004 3RD RANTOSCHENNAZ, FINAL PARZAMETISZ				
1390	8.53	41.2	19.4	357		PAROMETERS, FINAL				
¥	0. 55	710		2(0		1571224 705Creary 4-1'				
400	<u>පි.ග</u>	7,63	18.9	3,00		INITIAL PARROW TERS				
1515	7.87	4.28	160.6	349		Court 12 - 991 - 605				
1213	7.07	1.20	110.4	370		FINAL PARAMETERS				
			·····							
Vator Camaria	Dra a s									
Notes Sampling I	rrocedu	res:								
	···· /=									
	 ,				······································					

PIEZOMETRIC PRESSURES/LEVELS

Datum: Top of 1.5" Casing	Probe Type:	Westbay	Date: _	2/19/99	. Job No.: _	1572
	Serial No.:	1455	W	'ell Name:	MW-	3
Elevation of	Range: 0 to	750 psia		Client:	Jet Propulsion	Laboratory
atum(ft msl): 1100.34	Weather: 65 degrees, o	overcast	Ca	sing Size:	1.5-inch Westl	ay Casing
	•			Operator:	J. Brenner /	M. Losi
Ambient Reading (Pressure/Tem	perature/Time) Start:	14.04/18.01/100	1	Finish:	13.93/20.0	9/1015

		Fluid	Fluid Pressure Readings					Piezometric	
		Inside	Outside	Inside]		Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	653	161.58			21.72	1005		124.74	975.60
			242.99		<u> </u>				
			242.98						
			242.99						
			,	161.51					
4	558	120.20			22.60	1007		116.58	983.76
			205.31						
			205.37						
			205.34						
				120.19					
3	346	28.03			21.81	1009		104.27	996.07
			118.76						
	······································		118.77						
			118.80						
				28.10			,		
2	252	13.92			20.90	1011		106.04	994.30
			77.23						
			77.26						
			77.29						
			77.20	13.93					
1	172	13.90		10.00	20.21	1013		100.09	1000.25
	114	10.30	45.15		20.21				
			45.16						
									
			45.16	13.93					
ſ				13.93					

PIEZOMETRIC PRESSURES/LEVELS

Datum: <u>T</u>	op of 1.5" Casing	Probe Type:	Westbay	Date: 2/19	/99	Job No.: _	1572
		Serial No.:	1455	Well Na	me:	MW-	4
Elevation of		Range: 0 to	750 psia	Cli	ient:	Jet Propulsion	Laboratory
atum(ft msl):	1082.84	Weather: 65 degrees, c	vercast	Casing S	Size:	1.5-inch Westb	pay Casing
				Opera	ator:	J. Brenner /	M. Losi
Ambient Reading	g (Pressure/Tem	perature/Time) Start:	14.01/17.80/10	2 <u>0</u> Fin	ish: _	14.08/20.50	0/1035

		Fluid	Pressure Re	adings				Piezometric	
ĺ		Inside	Outside	Inside			Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	513	125.69			20.45	1023		98.07	984.77
			193.94						
			193.90						
			193.91						,
				125.58					
4	392	72.87			21.53	1025		88.74	994.10
			145.50						
			145.53						
			145.50						
				72.84					
3	322	42.35			21.40	1027		87.34	995.50
			115.76						
			115.79						
			115.76						
				42.41					
2	240	13.92			20.93	1029		87.16	995.68
			80.31						
			80.28						
			80,31						
		<u> </u>		13.89					
1	150	13.93			20.64	1031		79.88	1002.96
			44.43						
			44.46						
		1	44.43						
	· <u>·······················</u>	1		13.93					

PIEZOMETRIC PRESSURES/LEVELS

,	p of 1.5" Casing	Prope	vve	stbay	Date:	2/19/99	. Job No.: _	15/2	
		Seria	al No.: _	14	155	Well Name:		MW-	11
Elevation of		Range:	0 to_	750	psia		Client:	Jet Propulsion	Laboratory
atum(ft msl):	1139.30	Weather: 65 o	egrees,	, overcas	st	Ca	sing Size:	1.5-inch West	bay Casing
							Operator:	J. Brenner /	M. Losi
Ambient Reading	(Pressure/Tem	perature/Time)	Start: _	13.	96/19.24/07	30	Finish:	13.93/19.0	6/0747

		Fluid	Pressure Re	adings				Piezometric	
		Inside	Outside	Inside			Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	639	158.43			21.90	785		156.95	982.35
			222.92						
			222.92						
			222.91						
				158.41					
4	524	109.32			21.60	738		146.86	992.44
			177.42						
			177.46						
			177.43						
				109.35					
3	429	69.28			20.25	741		142.70	996.60
			138.03						
			138.07						
			138.07						
				69.32			-		
2	259	13.99			19.50	743		136.70	1002.60
			66.94						
			66.97						
			66.97						
				14.01					
1	149	13.96			19.18	745		113.46	1025.84
			29.32						
	***************************************		29.38						
	· · · · · · · · · · · · · · · · · · ·		29.35						
				13.99					

PIEZOMETRIC PRESSURES/LEVELS

Datum: Top of 1.5" Casing	Probe Type:	Westbay	Date: 2/19/99	Job No.: 1572
	Serial No.:	1455	Well Name:	MW-12
Elevation of	Range: 0 to	750 psia	Client:	Jet Propulsion Laboratory
atum(ft msl):1102.14	Weather: 65 degrees, o	overcast	Casing Size:	1.5-inch Westbay Casing
			Operator:	J. Brenner / M. Losi
Ambient Reading (Pressure/Temp	perature/Time) Start:	13.93/19.17/102	0 Finish:	14.01/18.09/1035

		Fluid	Pressure Re	adings				Piezometric	
		Inside	Outside	Inside	ļ		Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	548	189.30			20.73	1024		115.81	986.33
		<u> </u>	201.34						
		<u> </u>	201.32		<u> </u>		··		
			201.31		<u> </u>				
				189.31					
4	436	140.54			20.87	1026		107.38	994.76
			156.41						
			156.44						i
·			156.43						
				140.56					
3	323	91.34			19.86	1028		105.27	996.87
			108.36						
			108.34						
			108.37						
				91.41					
2	243	56.59			19.11	1030		104.25	997.89
			74.13						
			74.10						
			74.13						
				56.60					
1	140	14.08			18.15	1032		91.24	1010.90
			35.11						
			35.07						
			35.14						
				14.05					

PIEZOMETRIC PRESSURES/LEVELS

Datum: Top of 1.5" (Casing Probe Type:	Westbay	Date: 2/19/99	Job No.: <u>157</u>	<u>'2</u>
	Serial No.:	1455	Well Name:	MW-14	
Elevation of	Range: 0 to	750 psia	Client:	Jet Propulsion Labor	atory
atum(ft msl): 1173.47	7 Weather: 65 degrees, o	overcast	Casing Size:	1.5-inch Westbay Ca	sing
			Operator:	J. Brenner / M. Lo	si
Ambient Reading (Pressure	e/Temperature/Time) Start:	13.95/20.68/112	Finish:	13.93/20.07/1135	5

		Fluid	Pressure Re	adings]			Piezometric	
]		Inside	Outside	Inside	7		Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(c)	(hrs:min)	(ft)	(ft)	(ft)
5	540	175.47			21.22	1125		163.04	1010.43
			177.37		<u> </u>				
			177.33		<u> </u>				
			177.36						
				175.45					
4	456	138.75			21.48	1127		163.22	1010.25
			140.87						
			140.84						
			140.87						
				138.77					
3	382	106.72			21.20	1129		163.39	1010.08
			108.69						
			108.70						
			108.73						
				106.76		[]			
2	277	60.73			20.39	1131		164.10	1009.37
			62.89						
			62.86						
			62.89						
				60.71					
1	207	30.31			20.14	1133		164.58	1008.89
			32.31						
			32.34						
			32.34						
	···			30.30					

PIEZOMETRIC PRESSURES/LEVELS

Datum: Top of 1.5" Casing	Probe Type:	Westbay	Date: 2/19/99	Job No.: 1572
	Serial No.:	1455	Well Name:	MW-17
Elevation of	Range: 0 to	750 psia	Client:	Jet Propulsion Laboratory
atum(ft msl): 1191.21	Weather: 65 degrees, o	overcast	Casing Size:	1.5-inch Westbay Casing
			Operator:	J. Brenner / M. Losi
Ambient Reading (Pressure/Tem	perature/Time) Start:	13.95/18.30/080	3 Finish:	14.05/16.40/0818

·		Fluid	Pressure Re	adings				Piezometric	
		Inside	Outside	Inside			Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	726	171.75			19.81	806		218.16	973.05
			234.15						
			234.12						
			234.17						
				171.70					
4	582	109.02			19.25	809		210.44	980.77
			175.08						
			175.06						
			175.07						
				109.07					
3	468	59.52			17.94	811		208.28	982.93
			126.59						
			126.60						
			126.57						
				59.56					·
2	370	16.91			17.12	813		203.43	987.78
			86.21						
			86.19						
			86.22						
				16.94					
1	250	14.13			16.60	815		200.50	990.71
			35.48						
			35.45						
			35.45						
				14.15					

PIEZOMETRIC PRESSURES/LEVELS

Da	atum: Top of 1.5" Casing	Probe Type:	vvestbay	Date: 2/19/99	JOD NO.:1	15/2
		Serial No.:	1455	Well Name:	MW-18	
Elevati	ion of	Range: 0 to	750 psia	Client:	Jet Propulsion Lab	orator
atum(ft	msl): 1225.41	Weather: 65 degrees, c	vercast	Casing Size:	1.5-inch Westbay	Casing
				Operator:	J. Brenner / M.	Losi
Ambient	Reading (Pressure/Tem	perature/Time) Start:	14.06/16.87/082	0 Finish:	14.01/18.18/0	835

1		Fluid	Pressure Re	adings				Piezometric	
		Inside	Outside	Inside			Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	684	148.67			19.98	825		260.67	964.74
			197.54						
			197.58						
			197.52						
				148.68					
4	564	96.43			20.66	827		246.66	978.75
			151.59						
			151.62				"		
			151.59						
				96.42					
3	424	35.52			19.66	829		238.44	986.97
			94.45						
			94.49						
			94.49						
				35.56					
2	330	14.02			18.71	831		241.06	984.35
			52.58						
			52.61						
			52.58						
				14.33					
1	270	14.01			18.28	833		241.89	983.52
			26.23						
			26.20						
			26.23						
<u> </u>				14.00					

PIEZOMETRIC PRESSURES/LEVELS

Datum: T	op of 1.5" Casing	Probe Type:	Westbay	Date: <u>2/19/99</u>	Job No.: 1572
		Serial No.:	1455	Well Name:	MW-19
Elevation of		Range: 0 to	750 psia	Client:	Jet Propulsion Laboratory
atum(ft msl):	1142.94	Weather: 65 degrees, o	overcast	Casing Size:	1.5-inch Westbay Casing
		•		Operator:	J. Brenner / M. Losi
Ambient Reading	g (Pressure/Temp	perature/Time) Start:	14.13/17.58/09	12 Finish:	14.08/18.17/0925

		Fluid	Pressure Rea	adings				Piezometric	
		Inside	Outside	Inside	1		Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	498	88.75			18.46	915		160.85	982.09
			160.27						
			160.24						
			160.27						
				88.76					
4	444	65.17			18.30	917		160.73	982.21
			136.89						
			136.92						
			136.90						
				65.21					
3	392	42.60			18.42	919		156.96	985.98
			116.01						
			115.98						
			115.99						
				42.57					
2	314	14.08			18.47	921		157.89	985.05
			81.77						
			81.80						
			81.77						
				14.11					
1	242	14.05			18.25	923		158.37	984.57
			50.38						
	· · · · · · · · · · · · · · · · · · ·		50.35						
			50.35						
				14.11					

PIEZOMETRIC PRESSURES/LEVELS

Datum: Top of 1.5" Casing	g Probe Type:	Westbay	Date: 2/19/99	Job No.: 1572
	Serial No.:	1455	Well Name:	MW-20
Elevation of	Range: 0 to	750 psía	Client:	Jet Propulsion Laboratory
atum(ft msl): 1165.05	Weather: 65 degrees,	overcast	Casing Size:	1.5-inch Westbay Casing
			Operator:	J. Brenner / M. Losi
Ambient Reading (Pressure/Tem	nperature/Time) Start:	14.04/17.73/084	5 Finish:	14.07/17.92/0900

		Fluid	Pressure Re	adings				Piezometric	
		Inside	Outside	Inside			Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	900	264.61			21.73	848		194.91	970.14
			319.70						
			319.71						
			319.72						
				264.60					
4	700	177.74			22.46	850		214.14	950.91
			224.67						
			224.71						
			224.64						
				177.62					
3	562	117.62			21.85	852		192.15	972.90
			174.41						
			174.38						
			174.36						
			·	117.68					
2	392	43.90			20.21	854		191.87	973.18
			100.83						
			100.80						
			100.81						
				43.91					
1	230	14.08			18.08	856		193.79	971.26
			29.76						
			29.73						
			29.76						
	· · · · · · · · · · · · · · · · · · ·			14.08					

PIEZOMETRIC PRESSURES/LEVELS

Datum: Top of 1.5" Ca	sing Probe Type:	Westbay	Date: 2/19/99	Job No.: 1572
	Serial No.:	1455	Well Name:	MW-21
Elevation of	Range: 0 to	750 psia	Client:	Jet Propulsion Laboratory
atum(ft msl): 1059.10	Weather: 65 degrees, o	overcast	Casing Size:	1.5-inch Westbay Casing
			Operator:	J. Brenner / M. Losi
Ambient Reading (Pressure/	Temperature/Time) Start:	13.74/20.94/120	5 Finish:	13.93/19.59/1217

		Fluid	Pressure Re	adings				Piezometric	
		Inside	Outside	Inside	ł		Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation .
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	372	136.33			20.69	1207		56.76	1002.34
<u> </u>		<u> </u>	150.50						
			150.47					-	
			150.50						
				136.35					
4	310	109.27			20.70	1209		56.84	1002.26
			123.59						
			123.59						
			123.56						
				109.31					
3	240	79.27			20.29	1211		56.00	1003.10
			93.61						
			93.58						
			93.61						
				79.32					
2	161	44.85			19.82	1213		56.44	1002.66
			59.17						
			59.14						
			59.17						
				44.90					
1	90	13.96			19.62	1215		59.20	999.90
	, , , , , , , , , , , , , , , , , , , 		27.20						
			27.16						
			27.20						
				13.96					

PIEZOMETRIC PRESSURES/LEVELS

Datum: Top of 1.5" Casing	Probe Type:	Westbay	Date: 2/19/99	Job No.:	1572
	Serial No.:	1455	Well Name:	MW-2	2
Elevation of	Range: 0 to	750 psia	Client:	Jet Propulsion I	_aboratory
atum(ft msl): 1176.98	Weather: 65 degrees, o	overcast	Casing Size:	1.5-inch Westb	ay Casing
			Operator:	J. Brenner /	M. Losi
Ambient Reading (Pressure/Temp	perature/Time) Start:	13.93/19.65/114	40 Finish:	13.86/20.71	/1155

		Fluid	Pressure Re	adings				Piezometric	
		Inside	Outside	Inside			Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	588	164.42			21.77	1145		179.51	997.47
			190.98						
			190.99						
			190.96						
				164.40					
4	467	111.81			22.06	1147		176.28	1000.70
			139.91						
			139.94						
			139.92						
				111.76					
3	389	77.79			21.89	1149		172.33	1004.65
			107.85						
			107.82						
			107.79						
				77.78					
2	329	51.79			21.20	1151		172.56	1004.42
			81.70						
			81.73						
			81.70						
				51.81					•
1	245	14.77			20.84	1153		176.50	1000.48
			43.58						
			43.61						
	· · · · · · · · · · · · · · · · · · ·		43.58						
	······································			14.75					

PIEZOMETRIC PRESSURES/LEVELS

Datum: Top of 1.5" Casing	Probe Type: _	Westbay	Date: 2/19/99	Job No.: <u>1572</u>
	Serial No.: _	1455	Well Name:	MW-23
Elevation of	Range: 0 to_	750 psia	Client:	Jet Propulsion Laboratory
atum(ft msl): 1108.84	Weather: 65 degrees,	overcast	Casing Size:	1.5-inch Westbay Casing
			Operator:	J. Brenner / M. Losi
Ambient Reading (Pressure/Temp	perature/Time) Start:	13.95/20.18/070	5 Finish:	13.87/20.03/0720

		Fluid	Pressure Re	adings				Piezometric	
		Inside	Outside	Inside	1		Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	542	192.15			20.20	707		113.63	995.21
			199.62						
			199.61						
			199.60						
				192.11					
4	445	149.96			20.83	710		112.50	996.34
			158.04						
			158.07						
			158.04						
				149.97					
3	319	95.35			20.61	712		108.41	1000.43
			105.22						
			105.19						
			105.19						
				95.38					
2	254	67.30			20.46	714		108.66	1000.18
			76.90						**
			76.93						
			76.91	· · · · · · · · · · · · · · · · · · ·					
				67.27					-
1	174	32.50			20.02	717		109.76	999.08
			41.73						
			41.76						
		† i	41.79						
				32.50					

PIEZOMETRIC PRESSURES/LEVELS

Datum: Top	of 1.5" Casing	Probe Type:	Westbay	Date:	2/19/99	. Job No.:	1572
		Serial No.:	1455	W	ell Name:	MW-2	24
Elevation of		Range: 0 to	750 psia		Client:	Jet Propulsion	Laboratory
atum(ft msl):	1200.94	Weather: 65 degrees, o	overcast	Ca	sing Size:	1.5-inch Westh	ay Casing
					Operator:	J. Brenner /	M. Losi
Ambient Reading (Pressure/Temp	erature/Time) Start:	13.96/19.57/105	5	Finish:	13.83/21.3	5/1110

		Fluid	Pressure Re	adings				Piezometric	
-		Inside	Outside	Inside			Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	678	185.20			21.57	1059		209.60	991.34
			216.93		<u> </u>				
			216.96		<u> </u>				
			216.95						
				185.21	<u> </u>				
4	554	131.29			22.20	1101		205.68	995.26
			164.87						
			164.90						
		1	164.91						
				131.33					
3	435	79.52			22.23	1103		201.68	999.26
			115.04						
			115.07						
			115.01		•				
				79.50					
2	373	52.58			21.99	1105		201.72	999.22
			88.15						
			88.12						
			88.16						
				52.56					
1	279	13.79			21.60	1107		201.30	999.64
			47.61						
			47.55						
			47.58						
				13.83					

PIEZOMETRIC PRESSURES/LEVELS

Datum: To	op of 1.5" Casing	Probe Type:	Westbay	Date: 3/24/99	Job No.:1572
		Serial No.:	1455	Well Name:	MW-3
Elevation of		Range: 0 to	750 psia	Client:	Jet Propulsion Laboratory
atum(ft msl):	1100.34	Weather: 60 degrees, s	unny	Casing Size:	1.5-inch Westbay Casing
•				Operator:	J. Brenner / M. Losi
Ambient Reading	(Pressure/Tem	perature/Time) Start:	13.90/19.16/095	0 Finish:	13.96/20.36/1005

		Fluid	Pressure Re	adings				Piezometric	
		Inside	Outside	Inside			Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	653	161.43			21.52	954		124.74	975.60
			247.95						
			247.91		<u> </u>				
			247.96						
				161.35					
4	558	120.02			22.56	956		116.58	983.76
			208.85						
			208.82						
			208.85						
				120.08					
3	346	27.88			21.55	958		104.27	996.07
			119.84						
			119.81						
			119.85						
				27.90					
2	252	13.89			20.91	1000		106.04	994.30
			79.19						
			79.16						
			79.19						
				13.90					
1	172	13.93			20.43	2		100.09	1000.25
			46.37						
	· · · · · · · · · · · · · · · · · · ·		46.40						
	······································		46.37	***					
				13.95					

PIEZOMETRIC PRESSURES/LEVELS

Datum: Top	of 1.5" Casing	Probe Type	: <u>We</u>	estbay	Date:	3/24/99	Job No.: _	1572
		Serial No.	:1	455	W	ell Name:	MW-	4
Elevation of		Range: 0 to	750	psia		Client:	Jet Propulsion	Laboratory
atum(ft msl):	1082.84 W	eather: 60 degree	es, sunny	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ca	sing Size:	1.5-inch Westh	oay Casing
						Operator:	J. Brenner /	M. Losi
Ambient Reading(Pressure/Tempera	ature/Time) Start:	:13.	.99/17.92/103	32	Finish:	13.90/20.4	0/1045

		Fluid	Pressure Re	adings			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Piezometric	
		Inside	Outside	Inside	1		Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	513	125.40			21.56	1035		98.07	984.77
			197.11						
			197.16						
			197.15						
				125.38					
4	392	72.63			21.77	1037		88.74	994.10
			147.68						
			147.71						
			147.68						
				72.67					
3	322	42.15			21.62	1039		87.34	995.50
			117.67						
			117.64						
			117.67						
				42.19					
2	240	13.86			21.20	1041		87.16	995.68
			82.12						
			82.16						
			82.13						
				13.92					
1	150	13.79			20.53	1043		79.88	1002.96
			45.52						
			45.55						
		1	45.52						
				13.93					

PIEZOMETRIC PRESSURES/LEVELS

Datum: Top	of 1.5" Casing	Probe Type:	Westbay	Date: 3/24/99	Job No.:1572
		Serial No.:	1455	Well Name:	MW-11
Elevation of		Range: 0 to	750 psia	Client:	Jet Propulsion Laboratory
atum(ft msl):	1139.30	Weather: 60 degrees,	sunny	Casing Size:	1.5-inch Westbay Casing
				Operator:	J. Brenner / M. Losi
Ambient Reading	(Pressure/Temp	erature/Time) Start:	13.59/23.33/111	5 Finish:	13.99/18.58/1130

		Fluid	Pressure Re	adings				Piezometric	
		Inside	Outside	Inside			Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	639	224.92			22.28	1119		156.94	982.36
			226.39		<u> </u>				
			226.36						
			226.39						
				225.89					
4	524	175.25			22.12	1121		146.86	992.44
			181.02						
			181.05						
			181.02						
				175.26					
3	429	134.47			20.62	1123		142.70	996.60
			140.51						
			140.55						
			140.51						
				134.53					
2	259	60.88			19.55	1125		136.70	1002.60
			68.96						
			68.94						
			68.97						·
				60.89					
1	149	14.02			18.83	1127		113.46	1025.84
			30.39	·····					
			30.42						
		1	30.42						
		 		14.01		-			

PIEZOMETRIC PRESSURES/LEVELS

Datum: <u>Tor</u>	o of 1.5" Casing	Probe Type:	Westbay	Date:	3/24/99	. Job No.:	1572
		Serial No.:	1455	W	'ell Name:	MW-1	12
Elevation of		Range: 0 to	750psia		Client:	Jet Propulsion	Laboratory
atum(ft msl):	1102.14	Weather: 60 degrees, s	unny	Ca	sing Size:	1.5-inch Westh	pay Casing
					Operator:	J. Brenner /	M. Losi
Ambient Reading	(Pressure/Temp	erature/Time) Start:	14.01/16.17/10	15	Finish:	14.05/18.1	3/1030

	·	Fluid	Pressure Re	adings				Piezometric	
		Inside	Outside	Inside]		Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	548	207.65			21.62	1020		115.81	986.33
			204.63						
			204.60						
			204.62						
				207.61					
4	436	158.91			21.38	1022		107.38	994.76
			158.81						
			158.81						
			158.81						
				158.93					
3	323	109.71			20.25	1024		105.27	996.87
			110.29						
			110.33						
			110.27						
				109.76					
2	243	74.98			19.35	1026		104.25	997.89
			75.96						
			75.93						
			75.96						
				74.96					
1	140	30.07			18.50	1028		91.24	1010.90
			35.45						
			35.41				····		
			35.45					T	
		1		30.11					· · · · · · · · · · · · · · · · · · ·

PIEZOMETRIC PRESSURES/LEVELS

Datum: To	p of 1.5" Casing	Probe Type:	Westbay	Date:	3/24/99	Job No.:	1572
		Serial No.:	1455	W	ell Name:	MW-1	14
Elevation of		Range: 0 to	750 psia		Client:	Jet Propulsion	Laboratory
atum(ft msl):	1173.47	Weather: 60 degrees, s	sunny	Ca	sing Size:	1.5-inch Westh	oay Casing
					Operator:	J. Brenner /	M. Losi
Ambient Reading	(Pressure/Temp	erature/Time) Start:	13.83/21.19/134	5	Finish:	13.87/20.3	5/1402

		Fluid	Pressure Re	adings				Piezometric	
		Inside	Outside	Inside		1	Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	540	174.89			23.41	1352		163.04	1010.43
			178.89						
			178.86						
			178.86						
				174.90					
4	456	138.33			22.51	1354		163.22	1010.25
			142.40						
			142.38						
			142.38						
				138.36					
3	382	106.16			21.79	1356		163.39	1010.08
			110.28						
			110.25						
			110.28						
				106.19					
2	277	60.44			20.80	1358		164.10	1009.37
			64.49						
			64.46						
			64.49						
				60.48					
1	207	29.96			20.44	1400		164.58	1008.89
		1	33,96						
			33.99						
			33.96						
				29.93					

PIEZOMETRIC PRESSURES/LEVELS

Datum: To	p of 1.5" Casing	Probe	Type: _	Westbay		Date:	3/24/99	. Job No.: _	1572
		Seri	al No.: _	1455		W	'ell Name:	MW-	17
Elevation of		Range:	0 to_	750 psi	а		Client:	Jet Propulsion	Laboratory
atum(ft msl):	1191.21	Weather: 60 c	degrees,	, sunny		Ca	sing Size:	1,5-inch West	pay Casing
							Operator:	J. Brenner	M. Losi
Ambient Reading	(Pressure/Tem	perature/Time)	Start:	14.17/12	2.85/074	5	Finish:	14.05/16.2	6/0803

		Fluid	Pressure Re	adings				Piezometric	
		Inside	Outside	Inside			Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	726	188.59			17.56	750		218.16	973.05
			239.07						
			239.06						
			239.05						
				188.60					
4	582	125.83			18.01	752		210.44	980.77
			178.79						
			178.77						
			178.77						
				125.92					
3	468	76.38			16.94	755		208.28	982.93
			129.35						
			129.38						
			129.38						
				76.36					
2	370	33.67			16.50	757		203.43	987.78
			88.49						
			88.49						
	· · · · · · · · · · · · · · · · · · ·		88.52						
				33.70					
1	250	14.11			16.29	759		200.50	990.71
			37.98						
			38.02						
			37.98						
		 		14.09					

PIEZOMETRIC PRESSURES/LEVELS

Datum: To	p of 1.5" Casing	Probe Type:	Westbay	Date: _	3/24/99	Job No.:	1572
		Serial No.:	1455	W	ell Name:	MW-1	8
Elevation of		Range: 0 to	750 psia		Client:	Jet Propulsion	Laboratory
atum(ft msl):	1225.41	Weather: 60 degrees, s	sunny	Ca	sing Size:	1.5-inch Westh	ay Casing
					Operator:	J. Brenner /	M. Losi
Ambient Reading	(Pressure/Tem	perature/Time) Start:	14.05/18.09/083	5	Finish:	14,08/18.0	2/0845

		Fluid	Pressure Rea	adings				Piezometric	
}		Inside	Outside	Inside]		Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	684	148.34			19.37	838		260.67	964.74
			203.01						
			203.02						
			203.01						
				148.30					
4	564	96.02			20.20	840		246.66	978.75
			155.37						
			155.40						
			155.39						
				96.05					
3	424	35,18			19.50	842		238.44	986.97
			96.86				-		
			96.90						
			96.90						
				35.19					
2	330	14.05			18.62	845		241.06	984.35
			55.17						
			55.21						
			55.18	····					
				14.02					
1	270	14.02			18.13	847		241.89	983.52
			28.95						
	········		28.92			t			
			28.95						
				14.03					

PIEZOMETRIC PRESSURES/LEVELS

Datum: Top of 1.5	"Casing Probe Type:	Westbay	Date: 3/24/99	Job No.: 1572
	Serial No.: _	1455	Well Name:	MW-19
Elevation of	Range: 0 to	750 psia	Client:	Jet Propulsion Laboratory
atum(ft msl):1142	.94 Weather: 60 degrees,	sunny	Casing Size:	1.5-inch Westbay Casing
			Operator:	J. Brenner / M. Losi
Ambient Reading (Press	ure/Temperature/Time) Start:	14.08/17.98/093	O Finish:	14.08/18.18/0945

		Fluid	Pressure Re	adings				Piezometric	
		Inside	Outside	Inside			Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.;	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	498	88.74			18.33	933		153.36	989.58
			163.49						
			163.46					ļ <u>.</u>	
			163.49						
				88.71					
4	444	65.14			18.22	935		153.32	989.62
			140.11						
			140.05						
			140.11						
				65.18					
3	392	42.52			18.34	937		152.16	990.78
			118.04						
			118.07						
			118.04						
				42.51					
2	314	14.02			18.36	939		153.35	989.59
			83.73			,			
			83.70						
			83.73						
				14.03			****	· · · · · · · · · · · · · · · · · · ·	
1	242	14.05			18.23	941		154.36	988.58
			52.06				~ ~~~		
-			52.09						· · · · · · · · · · · · · · · · · · ·
			52.06						
				14.12					

PIEZOMETRIC PRESSURES/LEVELS

Datum: Top of 1.5"	Casing Probe Type:	Westbay	Date: 3/24/99	Job No.: 1572
	Serial No.:	1455	Well Name:	MW-20
Elevation of	Range: 0 to	750 psia	Client:	Jet Propulsion Laboratory
atum(ft msl): 1165.	05 Weather: 60 degrees, s	sunny	Casing Size:	1.5-inch Westbay Casing
			Operator:	J. Brenner / M. Losi
Ambient Reading (Pressu	re/Temperature/Time) Start:	13.94/17.33/0900	Finish:	14.11/18.40/0915

		Fluid	Pressure Re	adings				Piezometric	
		Inside	Outside	Inside]		Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.;	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	900_	264.22			22.58	904		194.91	970.14
			321.76						
			321.79						!
			321.78						
				264.16					
4	700	177.24			22.64	906		214.14	950.91
			230.96						
			230.97						
			230.94						
				177.27					
3	562	117.25			21.85	908		192.15	972.90
			176.67						
			176.70						
			176.68						
				117.26					
2	392	43.37			19.97	910		191.87	973.18
			102.62						
			102.63						
			102.63						
				43.39					
1	230	14.15			18.67	912		193.79	971.26
			31.60						
			31.57						
			31.60						
				14.11					

PIEZOMETRIC PRESSURES/LEVELS

Datum: To	p of 1.5" Casing	Probe Type:	Westbay	Date:	3/24/99	Jet Propulsion 1.5-inch Westb	1572
•		Serial No.:	1455	W	/eli Name:	MW-2	21
Elevation of		Range: 0 to_	750 psia		Client:	Jet Propulsion	Laboratory
atum(ft msl):	1059.10	Weather: 60 degrees,	sunny	Ca	sing Size:	1.5-inch Westb	ay Casing
					Operator:	J. Brenner /	M. Losi
Ambient Reading	(Pressure/Temp	perature/Time) Start:	13.89/16.98/14	10	Finish:	13,99/19.8	8/1425

		Fluid	Pressure Re	adings				Piezometric	
		Inside	Outside	Inside	7		Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	372	135.88			21.93	1415		56.76	1002.34
			152.01						
			152.01						
			151.98						
				135.83					
4	310	108.83			21.45	1417		56.84	1002.26
			125.17						
			125.14						
			125.15						
				108.89		·			
3	240	78.78			20.73	1419		56.00	1003.10
			95.14						
			95.11						
			95.17						
				78.83					
2	161	44.40			20.18	1421		56.44	1002.66
			60.71						
			60.68						
			60.72						
				44.41					
1	90	13.93			19.90	1423		59.20	999.90
	· · · · · · · · · · · · · · · · · · ·		28.75						
			28.82						
	T		28.82						· · · · · · · · · · · · · · · · · · ·
				13.90					

PIEZOMETRIC PRESSURES/LEVELS

Datum: To	p of 1.5" Casing	Probe Type:	Westbay	Date: 3/24/99	Job No.:	1572
		Serial No.:	1455	Well Name:	MW-22	<u>,</u>
Elevation of		Range: 0 to	750 psia	Client:	Jet Propulsion L	aboratory
atum(ft msl):	1176.98	Weather: 60 degrees, s	unny	Casing Size:	1.5-inch Westba	y Casing
				Operator:	J. Brenner / N	1. Losi
Ambient Reading	(Pressure/Temp	perature/Time) Start:	13.94/21.01/15	55 Finish:	13.83/20.99	1210

	<u> </u>	Fluid	Pressure Rea	adings				Piezometric	
		Inside	Outside	Inside	ł		Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	588	178.05			22.34	1200		179.51	997.47
			193.33						
			193.36		<u></u>			[
			193.32						
				178.02					
4	467	125.47			22.30	1202		176.28	1000.70
			142.06						
			142.03						
			142.07						
				125.51					
3	389	91.62			22.13	1204		172.33	1004.65
			109.54						
			109.57						
			109.54						
				91.63					
2	329	65.63			21.73	1206		172.56	1004.42
			83.44						
			83.47						
			83.44						
				65.67					
1	245	28.76			21.15	1208		176.50	1000.48
	· · · · · · · · · · · · · · · · · · ·		45.63						
			45.60						
			45.63						
				28.77					

PIEZOMETRIC PRESSURES/LEVELS

Datum: To	pp of 1.5" Casing	Probe Type: _	Westbay	Date: 3/24/99	Job No.:1572
		Serial No.: _	1455	Well Name:	MW-23
Elevation of		Range: 0 to_	750 psia	Client:	Jet Propulsion Laboratory
atum(ft msl):	1108.84	Weather: 60 degrees,	sunny	Casing Size:	1.5-inch Westbay Casing
	•			Operator:	J. Brenner / M. Losi
mbient Reading	(Pressure/Temp	perature/Time) Start:	13.90/19.17/10	50 Finish:	13.93/20.44/1110

		Fluid	Pressure Re	adings				Piezometric	
		Inside	Outside	Inside	1		Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	542	191.92			21.93	1057		113.63	995.21
			202.32			<u></u>			
			202.35				-		
			202.34						
				191.90					
4	445	149.88			22.02	1059		112.50	996.34
			160.54						
			160.57						
			160.58						
				149.89					
3	319	95.28			21.50	1101		108.41	1000.43
			107.20						
			107.23						
			107.20						
				95.25					
2	254	67.14			20.68	1104		108.66	1000.18
			78.95						
			78.92						
			78.95						
				67.15					
1	174	32.30			20.46	1106		109.76	999.08
			43.87			-			
			43.84						
			43.87						
				32.36					

PIEZOMETRIC PRESSURES/LEVELS

Datum: <u>To</u>	p of 1.5" Casing	Probe	Type: _	Westbay	Date: 3/24/99	Job No.: 1572
		Seria	al No.: _	1455	Well Name:	MW-24
Elevation of		Range:	0 to_	750 psia	Client:	Jet Propulsion Laboratory
atum(ft msl):	1200.94	Weather: 60 c	legrees,	sunny	Casing Size:	1.5-inch Westbay Casing
	•				Operator:	J. Brenner / M. Losi
Ambient Reading	(Pressure/Temp	perature/Time)	Start:	13.93/20.00/1	135 Finish:	13,91/20.66/1150

		Fluid	Pressure Re	adings				Piezometric	
		Inside	Outside	Inside	1		Depth to	Level	Water Level
Screen	Depth	Casing	Casing	Casing	Temp.	Time	Water	Outside Port	Elevation
No.:	(ft btoc)	(psia)	(psia)	(psia)	(C)	(hrs:min)	(ft)	(ft)	(ft)
5	678	205.66			21.67	1140		209.60	991.34
			219.78						
			219.77						
			219.79						
				205.64					
4	554	151.84			22.09	1142		205.68	995.26
			167.34						
			167.31						
			167.34						
				151.85					
3	435	100.19			22.13	1144		201.68	999.26
			116.91						
			116.94						
			116.91						
				100.18					
2	373	73.31			21.99	1146		201,72	999.22
			89.99						
			90.02						
			90.02						-
				73.34					····
1	279	32.54			20.83	1148		201.30	999.64
			49.69						
			49.72						
			49.72						
		f		32.57					

P	age	.)	of	1
	aye		· · · ·	

		Inside MP Ca											End of Coa	ssion)	8 ASIA
	÷	Surface Fu				Position Sampler					tion Chec				
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	C	Comments
1	~		/	v	v	V	14.10	1	1027	1030	~			1ST RUN PO Sent	en 1, Initial
2	~	.	~		-		14.12	ما		1049	_	14.11	1,0	and Rus, very	MUS = 4-73 INSTALS, PARCINS, Y2CHE
3		1	Ź	./	✓	1	13.97	/	1104	1	~	14,08	0,75	FIRE PARAMETERS	Simple Giletions, NTUS: 6.4
4															<u> </u>
5															
6														W-W-	
7															
8															
9															
10												- ·			
11															
12															
omi	nents:	Hzv fress in	Side	mr. 46	. 29										Total Volume: 1.75/

Page		of	
------	--	----	--

W

FOSTER WHEELER ENVIRONMENTAL CORPORATION

		JPL						Locatio	n: <u>^</u>	1w-	3	******************	D	epth: 252 Date: 3/3/99
Well	Name:	MW-3	.	San	npling Z	one No.:_	2		Stai	rting Tin	ne: 04	/3	F	Finishing Time: 1015
Tech	nicians_	D. DIRKI	N	B. FG	idsa	sia D	TIETTE	E						
											····	(End of Se	ssion) 14,12(PSIA)
		Surface Fu	nction (Checks		Position Sampler			Surfac	ce Collec	tion Chec	ks		
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	Comments
1	V	/	ý	april .	¥	1	14, 14	/	919	921	~	14.15	1.0	155 pun of Sereen 152, Initial Primmetery NTV5= 2.15 Inter conect samples, vous metals,
2	./	<i>i</i> / .	V	مسن	1	·/	14,20	i	937	141	~	14.17	1.0	minns, Heart
3	,		/	/	<i>.</i>	-	14.15	/	1064	1007	1	14.12	.75	MANIONS, 1/2 CATE CARE, CLCY, FINAL PARAMETERS ATUS - 2, 91
4	<u>;</u> .													
5														
6														
7														
8														
9														
10														
11														
12														
Com	ments:	170 breance	AbeJe	: Mp	78.85									Total Volume: 2.75 &

						one No.:								epth: 346 Date: 313199 Finishing Time: 0821
	_	D. Dirk					015 (4)					<u> </u>		
ate	r Level	Inside MP Ca	sing (Bo	eginning of	Session	1)	29.91	P>1P	·			(End of Ses	ssion) <u>30. <i>01</i></u>
	:	Surface Fu	nction (hecks		Position Sampler			Surfac	e Collec	tion Chec	ks		
lun Vo.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	
1	1		L.	1	~	٠	29.91	V	6724	0726	~	29.92	1.0	1ST RUN TO SIZEE A3; TOTAL PARAMETS
2	W.	7	1	<i>i</i>	JAN.	ian marka	29.98	V	6749		V	29.98	1.0	NOS = 318 2nd Rus, concer mundal-ore, very metric Amount core malmon for very f metric and Rus; where Anima, care, city and
3	A.	./	·/	V	1.	1	30.61	/	0813	cšib	S	30.01	1.0	FINAL PARAMETERS NOTUS: 2.28
4	; ;													
5														
6	41.00													
7														
8	:								ļ					
9	• •													
10														
11				<u> </u>	,									
12														
m	ments:_]	to level	<u>(ე</u> ც	IS, DE	mp =	119.08					- <u> </u>		Triangle design	Total Volume: 3.C

Groundwater Sampling

Field Data Sheet for Multi-Port We	Field	Data	Sheet	for	Multi-P	ort \	Well
------------------------------------	-------	------	-------	-----	---------	-------	------

•		JPC						. Locatio	n:	mu	5-3		D	epth: <u>558</u> Date: <u>3/2/99</u>
Well	Name:	Mw-	3	San	npling Z	one No.:_	<u>4</u>		Stai	rting Tin	ne: <u>/</u> 5	15	F	Finishing Time: <u>f63</u> 6
														ssion)
	÷.	Surface Fu	nction (Checks		Position Sampler			Surfac	ce Collec	tion Chec	ks		
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	Comments
1	/		/	/	/	✓	122.08	V	1520	1521	1	122.08	٠5	NTVs 2 5.53
2					/	V	122.04	✓	1545	1547	/	122.01	1.0	ATUS 2 5.53 2nd RUN; MW-991-075: 2 VERS, METALY ANIONS & 1/2 CLOS CREE 3rd AND, Creb, CLOY and FINAL PARAMETER
3		/	/		√	-	121.99	/	1612	144	~	121.95	1.0	3rd Rw. CMG, Clay and Find Parameters NTVS 2 3.53
4	•													
5														
6														
7														
8														
9									1,					
10														
11												''A'		
12											ę			
Comi	ments:	Hyo Pres	ive !	Ossule	- קנון	191.19								Total Volume: 2.50 F

age		of	
-----	--	----	--

		J6r						Locatio	n: <u> </u>	<u>-w</u>	3		De	epth: <u>65</u>	3	Date:_	3/2/99
Nell	Name:	MW-3		San	npling Z	one No.:_	<u>5</u>		Star	ting Tin	ne:/3	333	F	Finishing Ti	me: <u>/</u> 5/	0	
		B. FEIC															
Wate	er Level	Inside MP Ca	sing (B	eginning o	f Session	1)_13,72	PCIA	/63.4	5 P2	10		(End of Ses	ssion)	/63.30	0 /811	3
	÷.	Surface Fu	nction (Checks		Position Sampler			Surfac	ce Collec	tion Chec	ks					
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	į		omments	_
1	~	/	✓	V	V	~	163.45	1	1346	1347	~	163.45	1-0	Nous - 4			
2	1	1	/	1		/	163.40	_	1421	1	/	163.47	1.0	2nd Rus	COLLECT M	200-991- C116	074; 2 VOST,
3	V	-	-	-	٠.	V	163.45	V	1450	1451	~	163.30	0.5	3Rd RUN MOS = 4	soloy;	FINA	1 Parameters
4																	
5																	
6																	
7																	
8																	
9	•																
10															·/	······································	
11																	
12																	
Com	ıments:_	HOPSE WIS	ide m	f = 2	32.12	·										Total Vo	lume: 2.5 (
											·						2

VEAL.
\W /

_	1	_	1
Page		of	<u> </u>

Proje Well	oct: Name:	16 Mw -	7L 4	San	nplina Z	one No.:		Locatio	n:	ارس tina Tin	_ 4 ne:	1150	D		Date: 3/8/77
Tech	nicians_	J. Bre	جاماة	Er .	3. Fe	NOPE	NSCH								14.02 PS/A
•	· .	Surface Fu	*	· ···		Position Sampler					tion Chec		· 		
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)		Comments
1	شممنا	~	V	V		V	3.55	1	1203	120%	V	14.17	1.0	IST RUIL I MTU'S :	NITIAL PARAMEROUS
2	V	V	ン	V	V	U	13.66	V	1221	1200	V	14.05	10	ZNO RUN, ZVOAS M	COLLECT M- 1991-01/2
3		/	/	~	٧.	i/	14.03	V	1239	1243	V	14.02	6,1	300 Ruhi	IVITAL PARAMEROS = 1.33 COLLECT Mar. 991-072 STALS ANIONS Cret, Cloy, FINAL AMEROLS
4	;														
5															
6															
7	-														
8															
9	•														
10															
11															
12															
Com	ments:	PR	÷5. c)57511	Æ	MP	CASIA	16 =	- 44	-لد'	P5, A				Total Volume: ろしん

同
\\W\

Proje	ect:			PL				Locatio	n:	Mu	3-4		D	epth: <u>240</u>	Date: 3/17/9	9
Well	Name:	MW	-4	San	npling Z	one No.:_	2		Star	ting Tim	ne:O	900		Finishing Time:	·	
		1.30							<u> </u>					·		
Wate	er Level	Inside MP Ca	sing (Bo	eginning o	f Session	n)	14.1	7 (P	<u>د م</u> رک		· · · · · · · · · · · · · · · · · · ·	(End of Ses	ssion)i4.((PSIA)	
	÷	Surface Fu	nction (Checks		Position Sampler			Surfac	e Collec	tion Chec	ks			_	
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)		Comments	
1	V		/	'سان	~	V	14.17	V	0907	0910	V	14.18	1.0	NET RUNGING	FIRE PAREMET	Ehs,
2	1/	V	V		V	V	14.16	V	9723	0924	· U	14.19	١.٥	2 110 12UN, COU MW 991-071: 4	LELT MW-SP/1-0 VOAS IDIOXANE + NDMA	12 7 -
3	V		V	i	L	1/	14,15	V	0943	0946	V	14,13	1.8	Į.		
4	1	/	i/	V	V	V	14.12	V	1002	1005	i	14.16	1,0	1	YOMA, ZMETALS	1
5	V	/	1	V	~	V	14.09	/	1021	1024	1	14.10	1,0	1	いから、2 上大、(小)	
6	/	V	/	V	v		14.11	V	7	104		14.11	0.5	6774 NON; 201	04; FINAL BAZAM	Norts /
7																
8																
9																
10																
11																
12																_
Con	nments:_	Press.	05	-2110€	M	P. CA	s, N6	= 7(1,93	, (*	P3.4)			Total Volume: 5.	5
	······································															

Page of	Page		of	1
---------	------	--	----	---

Proje	ect:)P(Locatio	n:	M	W - 4	f	D	Pepth: 322 Date: 3/8/99
Well	Name:	MW-	4	San	npling Z	one No.:_	3		Star	ting Tin	ne:lc)5S	F	Pepth: 322 Date: 3/6/59 Pepth: 145
Tech	nicians_	J.BR	ZENI	ter,	<u>B.</u>	FELD	PAS	CH						
Wate	er Level	Inside MP Ca	sing (B	eginning o	f Session	າ)	44	.19		······································		(End of Ses	ssion) 44.15
	•	Surface Fu	nction (Checks		Position Sampler			Surfac	e Collec	tion Chec	ks		
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	Comments
1	/		1	~	7		44.19	V	1104	1106	~	44.22	1.0	IST RUN INITIAL PARAMETER
2	V		1	/	1		44,19	V	1122	1		44.21	1.0	INTO S = Z. 97 Z 2ND RAN COLLECT MASTER OTO: -070/75/070 MSP; GVDAY 2MSTACS 300 12NN ANIONS, Crox, Clog. FINAL PAREMETERS
3	V	V	V	V	Ŷ	1-	44.14	V	1140	1142	-	44.15	1,0	FINAL PARAMETERS
4														·
5														
6														
7														
8														
9									<u> </u>					
10									<u> </u>					
11										ļ				
12														
Com	ments:_	Press	دن .	7317	₹ M	IP CA	sinco	= 1/0	,89 T	>5,,	3			Total Volume: 3.0 2 F

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\TAI
/144/

Page ____ of ___

Groundwater Sampling

Field Data Sheet for Multi-Port Well Technicians J. Branker B. Keusinauschi
Water Level Inside MP Casing (Beginning of Session) 74.75 (PS. A) (End of Session) 74.72 PS/A Position Surface Collection Checks Surface Function Checks Sampler Comments Run Valve Valve Water Level Volume Deactivate Valve Water Level Vacuum Check Valve Evacuate Activate No. Closed | Deactivate Activate in MP (ft) Set Arm Open Retrieved Valve Closed Container Closed in MP (ft) Open Locate Port Remove Tape (liters) Time Time IST PUNI INITIAL PARAMETERS.

NITUS = 3.33

ZNIO RUN COLERT MUNISCIPOLAGO

ZVORS METALS ANIONS CLEAR

BRO RUN CLOG FINAL

PALAMETERS 74.78 10959 NOOL 74.75 1020 1022 74.72 74.71 1043 1045 5 6 8 9 10 11 12 Comments: Press. OUTSIDE MP CASING = 137,41 PS.A

Page	 of	
. ~90	 ٠.	

Proje	ct:		<u> 180</u>					. Locatio	n:	Mu	3-4		D	Depth: 513 Date: 3/8/99 Finishing Time: 0945
Well	Name:	<u>Mw-</u>	4	San	npling Z	one No.:_	5		Star	ting Tin	ne:	<u> </u>	F	Finishing Time: 0945
Tech	nicians_	<u> 」、 </u>	21/1	1572_		s Fer	-DPA	SCH						The state of the s
Wate	r Level i	Inside MP Ca	sing (B	eginning o	f Session	ገ)	127.4	3 P3	141			(End of Se	ssion)\2.6.38
		Surface Fu	nction (Checks		Position Sampler			Surfac	e Collec	tion Chec	ks		
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	
1	V		~	~	~	/	127.43	~	054	064	~	127.47	1,0	NTUS = 2.39 ZNO RNY, COLLECT MW 991 (68)
2		\ \ \	<u></u>)		\	127.43	V	C405	0910	J	127.46	1.0	ZNO RUN', COLLECT MW 9912 (68) ZYDAS METALS ANGUNS C-64
3		V	/	V	<i>\</i>	/	126,4		0432	0954		126,30	0.5	ZYOAS METALS ANIUNS G-64 BRO RUN, CLOY FINIAL FOREMETALS
4														
5														,
6														
7														
8														
9	. ;													
10														
11														
12														
Comr	nents:	ROESS.	7د()	SICE	Mi	> Cas	s.N6 -	= 157	.62	ारे	۵,			Total Volume: 2,5

			Page	of $\underline{1}$
FOSTER WHEELER EN	IVIRONMENTAL CORPORATION	ON		

		D 7			~ -									ssion)
ate	r Level	Inside MP Car	sing (Be	eginning o	Session		13.12					(End of Ses	ssion)
	<i>∶</i> .	Surface Fu	nction C	hecks		Position Sampler			Surfac	e Collec	tion Chec	ks		
un o.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	Comments
	V	V	/			V	15.43	/	1347	1350	/	15, 45	1,0	1ST RUN TO SCAN-1 - INITIAL PARAM.
?	1	V		/			15.36	1	1402		1	[2nd rund - Ceilect Earnaire
}	. 🗸		1		V .	1	15,40	V		1422	V	15,38	1.0	VOLS. METALS ANIENS 3rd RUN, collect sample, Crth, CLOy and final Param.
5														
;														
,	-													
 }	:													
 }														
0														
1														
2														

FOSTER WHEELEI

R ENVIRONMENTAL CORPORATION

		-501									i 1			Field Data Sneet for Multi-Port We
_		JPL	1					Locatio	n: <u> </u>	<u> </u>	11		D	Depth: 259 Date: 3/5/99
Vell	Name:	<u> </u>	l	Sar	npling 2	one No.:_	2_		Star	ting Tin	ne: <u>1200</u>	<u> </u>	F	Finishing Time: <u>1337</u>
		\mathcal{D}, \mathcal{D}												
Vate	er Level	Inside MP Ca	sing (B	eginning o	f Session	n)	63.02	PSIA		•		(i	End of Ses	ssion) <u>63.01</u>
		Surface Fu	nction (Checks		Position Sampler			Surfac	e Collec	tion Chec	ks		
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	Comments
1	V		-			./	63 62	√	1221	1223	/	63.02		15 run to surcer \$7, Initial param.
2	/	~	/	/	-	<i>i</i> /	63.02	~	1242	1245	V	63.02	<u>/</u> u	ATUS 12.35" 2nd pour 10 SCREEN 3 - programe a entempting to record Torust. Atus: 3rd Aur Collect Somple, Vos, metals
3	, 0	/	/			1	63.02	/	1307	1310	/	63.03	1.0	3rd Aux Balest Sample, VOS, metals 1/2 Anions 4/2 Row Callest Lample; Anions, Cotto,
4	1	0	~	/	/	~	63.0 3	/	1325	1329	/	63.01	1.0	Clay 3 FINAL PARAM.
5	<u>:</u> -													
6														
7	,													
8														
9	•													
10														
11														
12														
.om	ments:	Hair Press.	is Ks.	lu mo: b	6.01									Total Volume: 4,0)

age		of	_/_
ugu		Ψ.	

Proje	ect:	JPL					······································	Location	n: <u>M</u>	<u>11-in</u>			D	epth: 429	Date: 3/5/99
Well	Name:	Mw-1	١	San										Finishing Time: _	
Tech	nicians_	D.	DIR	ダング	<u>\$</u>	B	FEID	BAUS	SCH						
		Inside MP Ca												ssion)/35~.	65 PS1A
	<i>:</i> ,	Surface Fu	nction C	hecks		Position Sampler			Surfac	e Collec	tion Chec	ks			
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)		Comments
1	/	V	./		~	U.	136.74	V	1167	11/0	" /	136 - 74	1.0	PARRIMETERS	SUBEN 3 ENTIAL
2	/	~	/	v	V	v	136,74	1	1131		/	136.71	1,0	ZAL RUN- metals Ani	MUST 2.63 CONECT SAMPLE VOLL ONS F 1/2 (AT SECRET 3, FINAL
3	-		سن		-ب	·	135,67	.5-	1260	1201		1357.65	0-5	Brd RUN TO PERSONNETERS	screen 3, FINAL
4															
5															
6															
7															
8	:														
9															
10															
11															
12				<u> </u>											
Con	ments: <u>i</u>	igh freez s	atside	m(~ 1	34.07										Total Volume: 2.54

|--|--|

Page\	of	1
-------	----	---

Groundwater Sampling

Proje	ect:	JPL						Locatio	n∙ M	w -1'	l			epth: 524 Date: 3/5/49
Well	Name:													Finishing Time:/050
Tech	nicians_	\mathcal{D}	RKI	4 3	B.	FEIDE	<i>fuzia</i>							
Nate	r Level	Inside MP Ca	sing (B	eginning o	f Session	n) <u>177</u>	.67 1014	··· ··· ···			· · · · · · · · · · · · · · · · · · ·	(End of Ses	ssion)
	:.	Surface Fu	nction (Checks		Position Sampler			Surfac	e Collec	tion Chec	ks		
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	Comments
1		~	/	/	/	/	177.67	/	0934	૦ ૧૫(~	177.61	1.6	18 Party Screen 47 Initial Surveying Mus 1.64 2nd RUN COVERT Sample MW-991-057
2	./	V	/		/		177.67	١	1006	१०० १	/	177.67	1.0	year Wer metals Anien
3		/	/	/		1	177.09	1	1037	१०५०	er.	١٦١, ١٥	l.o	HEA Was METALS, Anien 3rd Row Po Sciens Y: Cotto, Cicy and find purposition
4	••													
5														
6									"					
7														
8	.` 													·
9														
10														
11														
12														
om	ments:_/	420 Press. an	Ride in	1° + 174, 5	SI						v			Total Volume: 3.0 L

age		of	1
-----	--	----	---

	-	DDI		•										222 . (
Vate	r Level I	Inside MP Ca	sing (Be	eginning o	f Sessior	ı)	228,	67				(End of Se	ssion)227.16
Run No.	Surface Function Checks					Position Sampler Surface (tion Chec	ks		
	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	Comments
1	1	1	1	/	1	~	228.67	~	734	734	/	228.71	1.0	IST RIN TO Screen # 17 INITIAL PARAMETERS NEUS = 4.13
*	سا		i.	2	·~*									NO SAMPIG HOWAND FINES FINES 21 RUN - CONECT SUMPLE MW-991-056
3	سسا	است	i	1-		/	227,21	-	0841	८ ८५३	1	227.21	1.0	2nd RUN - CONECT SAMPLE MW-991-056 METAL METALS & ANIONS
4	/	/	1	/	/	<i>'</i>	227.16	/	၁ရီပဦး	0912	V	227.16	1.0	METAIS MSKINSO & ANIONS BIT POUR TO Screen 5 CHIET VOG (MS/MCO), CRT6, Cloy and final parameters.
5	<i>:</i> -													
6														
7														
8														
9	•													
10														
11														
12	 													

W

Page or	Page	1	of _L	_
---------	------	---	-------	---

																	r Multi-Port W
Proje	ect:		<u> 16</u>	7 <u> </u>				Locatio	n:	M	<u>۱- س</u>	Z	D	epth: _	140	Dat	100 Salar
Well	Name:	MW.	J (L	San	npling Z	one No.:_			Star	ting Tin	ne:\	235	F	inishin	g Time: _	15	300
Tech	nicians_	J. Bro	NN	er, T	3, K	ELID]	PAUSC	4									
		Inside MP Ca		•					7			(End of Ses	ssion) _	3	2.14	(PSIA)
		Surface Fu	nction (Checks		Position Sampler											
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)			Comm	
1	V	~	<i>'</i>			/	13.50	V	1241	1245	س	13.56	1.0	IST	ר'נה מלט'	NITA s = 31	7,53 AFTER
2	V		~		~	V	32.17		1416	1419	V	32.20	1.0	240 Po	16.NG 3	170's = 3.5 Ga	7,53 AFTER 25 Mulquis
3	V	/	_	~	ب	_	32,09	سا	1433	1437	~	32,17	1.0	3120	OPS. M	Columbia	ANCONS
4		/	ノ	レ	V	V	32.09	~	1447	1451	V	32.14	1,0	4-11-1	PARA	76+ 1	CIOY FINAL
5							·										
6																	
7	-																
8	:																
9	•																
10																	
11																	
12																	
Com	ments:	P145.	ov:	oiPé 1	19	CASIN	G = 3	35, 36	s (1	3,4)					Total	Volume: 4,0

FC

Page _

Project: Project: PC Sampling Zone No.:								Locatio	n:	Mo	7-12	1,25	D	pepth: 243 Date: 3/ 1/99
Tech	nicians	1.32	ENIN	er -	B.6	ELDP.	AUSCH							· .
Wate	er Level i	Inside MP Ca	sing (Be	eginning of	Session	n)	S8.7	257 (P5M	7		(End of Ses	ssion)53.24 (PSIA)
		Surface Fu	nction C	Checks		Position Sampler			Surfac	e Collec	tion Chec	ks		
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	
1	V	V	V	V	~	V	58,29	V	1135	1140	V	55.32	1.0	15T RUN' INITIAL PAKAMETERS. NTUS = 2.45 ZNORIN' COLLET MN-991-0549 MN-991-055' 44005 2 MM & 4 A
2	V	V	v	V	V	V	53,27	V	1156	1159	L	58,26	1.0	ZNO RIN; COLLEGT MN-991-054) MW-991-053; 4 VORS ZMEDOLS 1/2 AN
3	/	V	V	V	4	V	58,3)	~	1216	1219	u	58,24	1.0	MW 991-055, 4 VORS ZMADALS 1/2 AN 3100 MIN 1/2 ANIONS 20-67, 2010-4, FINAL PARAMETERS
4										_				·
5					-		_							
6														
7	٠													
8														
9						:								
10														
11													<u> </u>	
12									<u> </u>	<u></u>				
Com	ments:_	Pres	s. 0	<u>∪τ≤,;;</u>	ا څر	17 CA	15,NG	= 7	5,35	P	5,4)			
						<u> </u>								

	1		i
Page		of	7

Proje	ct:		18	ال_			···········	Locatio	n:	Μ.	١- ١	D	epth: 323 D	ate: 3/1/99	
Project:												F	Finishing Time:	Z S	
Tech	nicians_	J. Breinside MP Cas	7-12	er T	3,6	ROP	MSCL	<u> </u>							<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
Wate	r Level I	Inside MP Ca	sing (Be	eginning o	f Session	n)	93,2	<u>a</u> (PS.A	7		(End of Ses	ssion)92	,22 (12544)
	Surface Function Checks Position Sampler Surface Collection Checks													_	
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Damero Tona	Volume Retrieved (liters)		ments
1	V		V	V	7	V	93.20	V	1043	1045	~	93,22	1.0	IST PARAMETE PARAMETE ZNO RIN, COLLEGE ZVOAS METALS 3/20 PLN, CIO PUNDAMERO	rs Nos=462
2	V		V		س	V	93,21	V	1102	1104	レ	93,22	10	ZVOAS METALS	MW-991-052; ANIONS Cr6+
3	.V	V	/	V	٧.	v	92,20		1120	1122	<u></u>	92. ZZ	0.5	31215 KIN, C10 POMANTA	4. Finale
4			J												
5												,			
6															
7	-														
8															
9	,														
10															
11											ļ				
12															
Com	ments:_	Press	». O	JT511	2 <u> </u>	MP CA	15126	= 1C	19,4	7	tPs.	(1)		To	tal Volume: Z, 5 £

age		of	
~go		٠.	**********

^o roje	oct:		JF	76				Locatio	n:	M.	١-٢	epth: 436	Date:	3/1/99		
Nell	Name:	Mw.	12	San	npling Z	one No.:_	4		Star	- ting Tin	1е:С	925	F	epth: 436 Finishing Time:	1025	
Tech	nicians_	Level Inside MP Casing (Beginning of Session) 42.43 (PSIA) (End of														
Vate	r Level i	Inside MP Ca	sing (B	eginning o	f Session	142.43	56-5	F (F	314)		(End of Ses	ssion)i<	41.42	(PS.A)
	:	Surface Fu	nction (Checks		Position Sampler			Surfac	e Collec	tion Chec	ks				
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Damara Tana	Volume Retrieved (liters)		Comments	
1	V	V	i/	V)	V	142.46	V		C5740		142.43	1.0	IST RIN; IN MTUS = 2MO RIN; COL 2 VOAS ME 320 RIN; CI PARAM	3.05	ARCOMETTICS
2	/		V	V)		142.47	V	0155	1000	V	142.45	1,0	2 VOAS ME	CECT MW TAUS AN	1991-051. 113-5, C-611
3			/	1	V.	V	141 14	سما		1023	I	141.42	0.5	BARAM	OF FIN	ial
4																
5																
6																
7	,															
8																
9	•															
10																
11																
12					<u> </u>								,			
Com	ments:_	Pres	55. C	175,	Z	MP	GAS, N	6 =	158	,54	tPSUA	7)			Total Vol	ume: 2.52 ^F

|--|

	ì		}
Page		_ of	

Groundwater Sampling

														Field Data Sheet for Multi-Port Well
Proje	ect:		<u> </u>	<u>ر</u>				Locatio	n:	M	١- در	2	D	epth: 5+5 Date: 3/1/99 Finishing Time: 0920
Well	Name:	MW	-12	San	npling Z	one No.:_	5	•	Star	ting Tin	ne:	810	F	Finishing Time: 0920
Technicians J. BROWNER B. FELDPAUSCH														
Wate	Water Level Inside MP Casing (Beginning of Session) 191,12 (75,4) (End of Session) 191.09 (75.4)													
	Surface Function Checks Pos San								Surfac	e Collec	tion Chec	ks		
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	Comments
1	/		~	-	U		191,12			0823		191.10	1.0	NNS 503
2	V	V	V	V	س	V	191,13		0846	0848	V	191,10	1.0	NINS 503 ZND RIN' COXCECT MW MILOSO, ZYUNS METHES ANIUNS GEGY BRD RIN' Cloy, FINAL TAMMETERS
3			V	V	V.	/	191,15	V	0912	0714	~	191,09	(,)	BRD RIN' Cluy, FINAL
4													,	
5	÷													
6													·	
7	<u> </u>													
8														
9														
10														
11														
12														
Iom	ments:	Pres	<u>>.</u> ن	JTS, C	× 1	1P C	as, ~/ (=	, = Z	04.5	9	1	5,4)		Total Volume: 3.0.E

		<u>D:D1</u>												20
vate	r Level	Inside MP Ca	sing (Bo	eginning of	Session	1)(1			32	<u> </u>	PSIA	(End of Ses	ssion) 3200 ps in
		Surface Fu	nction (hecks		Position Sampler			Surfac	e Collec	tion Chec	ks		
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	Comments
1	/		/	i/		1	32.01	/	1343 B O	1346	~	32.06	1.0	1ST RUN 10 SCHEED 1, Intime PENSAMETERS, NEWS 4, 83 2nd Non, Callett Sample Mos-491-047
2	V	~	<i>\(\rightarrow\)</i>	/	/	/	32.01	/	1461			32-01	/.0	2nd Run, Callect Sample Mus-991-047
3	\	/	/	/	<i>i</i> /.	/	32.00	~	1426		~	32.00	1.0	UCAS METALS 30d tun to screen I when sample Aniess Cott, clay and final parameters
4	:													
5														
6														
7				-										
8														
9	• •													
10														
11														
12														
omi	nents:	1120 Pressure	oviside	wf. 33	. jo								***	Total Volume: 3.0.

Proje	ect:	JPC						Locatio	n: <u>M</u>	w-1	-(D	epth: 277 Date: 3/4/99
Weil	Name:	M)Wiv	L	San	npling Z	one No.:	2		Star	tina Tin	ne: <u>12</u>	31	F	Finishing Time: /3 29
		Dy												
Wate	er Level	Inside MP Ca	sing (Be	eginning o	f Session	n)	62.58	SIA	· · · · · · · · · · · · · · · · · · ·			(End of Ses	ssion)
	<i>;</i>	Surface Fu	nction C	Checks	:	Position Sampler			Surfac	e Collec	tion Chec	ks		
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container		Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level In MP (ft) Remove Tape	Volume Retrieved (liters)	Comments
1	٠	2,000	سن	سن	مسسد	, V	62.58	~	1238	1241	~	62.61	1.0	1st Bus, East To screen #2, Inition Parameters. NOV5:4.72 2nd Novi, Called SAMME in 911-046,
2	/	~	:/	~	/	~	62.62	/	1255	1258		62.61	1,0	VUAS, METER SAMPLE IN 911-046,
3	-	ine.	<i>\</i>		1.	یں۔	62.12		1317	1314	~	62.08	0.75	VUAS, MATERIA, AMONE SPOR RUNGE SERVER HZ., COTO, CHU, and Pinel parameters
4			(DD)		1	-								
5														
6														
7														
8														
9	•												-	
10														
11														
12														
Com	ments:_	this feets.	baside	Mp= C	3,45									Total Volume: 2,75-1

		TPL						Locatio	n: <u> </u>	NW-	14		D	Depth: 382 Date: 3/4/99
Well	Name:	1MW - 14	1	San	npling Z	one No.:_	3		Star	ting Tin	ne: <u>//</u> 2	3	F	Finishing Time: 12 24
		DDE		•						·				
Wat	er Level	Inside MP Ca	sing (B	eginning of	f Session	n) <i>[0</i>	8.47 PVI	4	·			(End of Ses	ssion)
	÷	Surface Fu	nction (Checks	·	Position Sampler			Surfac	e Collec	tion Chec	ks	******	
Run No.		Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	
1			. /	/	,	1	108.47	\	1131	1133	/	108.47	1.0	15 Rep JETTINE PROMINETONS TO SERVE 3 165 2nd AND , COPPET GEMPLE MU-941-045
2			/	/			108 49	V	1153	1156	/	108.52	j.6	2nd Red, Collect Symple mor-941-045 Virts, metals, Allions, 3rd Run, find Aramters
3	. 1	1	/	/	1	<i>></i>	107.02	1	1214	1216	V	167.88	0.15	3rd Aun, find Arrangers, To screen 3
4														
5	<i>:</i>													
6	·													
7														
8														
9														
10														
11														
12														
Com	ments:_	Hzo fresson	outsid	e mf.	104 . 0	ob ssin								Total Volume: 2. 15

Proj	ect:	Jac					· · · · · · · · · · · · · · · · · · ·	. Locatio	n:	imw-	19		D	epth: 452 Date: 3/4/99
Well	Name:	_ m~=-1	4	San	npling Z	one No.:_	4	··	Stai	rting Tin				Finishing Time:
Tech	nicians_	D. Durk	in,	B. fel	O BCLYS	xH		·						
Wate	r Level	Inside MP Ca	sing (B	eginning o	f Session	n) <u>/4</u>	0,66 (ps	14)	**************************************		· · · · · · · · · · · · · · · · · · ·	(End of Se	ssion) <u>134. 52 1514</u>
	÷,	Surface Fu	nction (Checks		Position Sampler			Surfac	ce Collec	tion Chec	ks		
Run No.	Activate	Vacuum Check Valve Closed		Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	Comments
1	~	1	<i>\(\sigma\)</i>	<i>'</i>	1/	1	140.66	/	1020	1022	1	140,61	1.0	1ST RUN, InitiAL PARAMETERS
2	/		/		<i>\(\sigma \)</i>	1	140.62	.	ાંબા	1043	_	140,62		INTUS = 2.08 PATRUS CHIEF SAMPLE MW-491. UMY WAS
3	. Januari	<i></i>	レ	"مسن	١.	سميس	13159	~	1104	un	~	139.52	,5	MARK, Anjun 1/2 cmg Sil Run Code Clay and Find phrameters. To screen 4
4														
5														
6														
7														
8														
9														
10														
11														
12														
Com	ments:	Hzo Pressur	৩ ৩গ	Bid MY	ا نم إدرا	, 18								Total Volume: 2.54 F2

Page	1	of	
~			

Proje	ect:	JPL						Locatio	n:	MW-	- ૧૯		D	epth: 540 Date: 314 194
Well	Name:	Mw 1	٠)	San	npling Z	one No.:_	5		Star	ting Tim	ne:	845	F	epth: 540 Date: 3[4] 94 Finishing Time: 1001
Tech	nicians_	DIDIRK	اً هن	3 B.	FEID	BAUSCI	+							
Wate	er Level	Inside MP Ca	sing (Bo	eginning of	f Session	ר (ר	177.7	29 (85)	<u>*)</u>			(End of Ses	ssion)
	<i>:</i> .	Surface Fu	nction (Checks		Position Sampler			Surfac	e Collec	tion Chec	ks		
Run No.		Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	Comments
1	V	i.	ارز	L	./	/	177.24	/	0854	08:6	1	177, 23	1.0	18 RUA PO SLABEN S. JUTIMI PAMMETERS
2	1	~	~	~	~		177.23			0923	-	177.22	10	NTES: 4.22 20th Ran, collect sample mw 491-043, was metall priors youth Finish expecting against ents, clay and
3	1 m			_		٠	177.20	s.c	०१५७	szpo	سن	177,17	1.0	Kind furthering animals enter Clay and
4														
5														
6														
7														
8														
9	• •													
10														
11														·
12														
Com	ments:_	the Pres	ss C	iss de	- WP	·=_177,4	7 ·)	relie t	Presjue	ে ৬স	รีว่อสั	MP ⊄	To pas	555-02.5 1-05-16-25. Total Volume: 31
											· · · · · · · · · · · · · · · · · · ·			

	ı				
W	FOSTER	WHEELER	ENVIRONMENTAL	CORPORA	ATION

Page ____ of ____

Proj	ect:	JPL						Locatio	n: <u>Y</u>	MW	-17		Do	epth: 250 Date: 3-10-99
Well	Name:	Muo-	17	San	npling Z	one No.:_	1		Star	ting Tin	ne: <u>/</u> 3	325	F	epth: <u>250</u> Date: <u>3-10-99</u> Finishing Time: <u>/4/7</u>
Tech	nicians_	DJ) RKI	2 (<u>3. f</u>	EDBA	usch	3 I	<u> </u>	^aye	<u> </u>			-
Wate	r Level	Inside MP Ca	sing (Bo	eginning of	f Session	n)		14.0	3 851	A		(End of Ses	ssion)
	·,	Surface Fu	nction (Checks		Position Sampler			Surfac	e Collec	tion Chec	ks		
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	Comments
1		√ ,	1		·/	· V	14, 03	/	1329	1335	· /	14.05	1.01	FIRST Run TO Screen 1, Initial Porumetres, NTW = 1.54 Collect sumply, mw-992-040, Voc.,
2	1	./	1	1	1	1	13.98				ا ا	13.99	1.0	collect simple, murggrove, voc,
3		1	2	'ن		1	/4 . 60	i/	1407		V	14.00	0,5	metals prior 3-d run to seren 1, care, clay and find farameters
4														
5														
6														
7														
8														
9														
10														
11														
12														
Com	ments:	Hzv Pressure	adade)	Np = 37.	20 ps	14								Total Volume: Zンプ F2

_		_
11		H
П	ΠA	II
П	1	11
- V		'/

Page ____ of ___

^o roje	ect:	7	PL					Locatio	n:	NW	-17		D	epth: <u>250</u> Finishing Time: _	Date: <u>3/</u>	18/99
Veil	Name:	MW-	רו	San	npling Z	one No.:_	(* ((RESAM)	ρν≼ン Star	ting Tim	ne:	1055	F	Finishing Time:	1115	
ech	inicians_	J. 1512	のとこれ	32 P.	112	16,1										
Vate	er Level	Inside MP Ca	sing (B	eginning o	f Session	n)	13.9	@ (P	S,27)	<u> </u>		(End of Se	ssion)13.5	es (Psia)	
	·	Surface Fu	inction (Checks		Position Sampler			Surfac	e Collec	tion Chec	ks				
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)		Comments	
1	V	V	V		V	/	13,96	V	1101	1103	i	13,98	05	15T RUN; 17 NTÚS =	LOCK	ect
2	,													15T RUN; 10 NTÚS = MUJ. 991-0 FOIZ LAM	40 (PES	ismple owly
3																
4																
5																
6																
7																
8																
9																
10																
11																
12																
Com	ments:_	Press	دن .خ	べるいつ	<u> </u>	1P C	As.~6	= 3	36.9	7 (Ps,2	2)			Total Volum	0,5
		<u></u>								- v ./ 						

Page	į	of	_\

Groundwater Sampling

Field Data Sheet for Multi-Port Well

Surface Function Surface Function Vacuum Check Vivalve Closed	g (Beginning of ion Checks alve Evacuate Container	FGID TO Session	ione No.:_ Bausch	2 , T.	Maye	Star	e Collect	10: <u>/2</u> c	チ (l	F	ssion) <u>17.54 p.j.</u> A
Surface Function Surface Function Vacuum Check Vivalve Closed	g (Beginning of ion Checks alve Evacuate Container	Valve Closed	Position Sampler Deactivate Set Arm Locate Port	/ L.	Maye	Surfac	e Collec		(I	.,	ssion)
Surface Functivacuum Check Valve Closed 0	g (Beginning of ion Checks alve Evacuate Container	Valve Closed	Position Sampler Deactivate Set Arm Locate Port	/ 8 ,	10 ps.p	Surfac	e Collec		ks (1		ssion) <u>17.54 p.j.</u> A
Vacuum Check Valve Closed 0	alve Evacuate Container	Closed	Sampler Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve	Valve	tion Chec			0
Valve Closed O	pen Container	Closed	Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open	Valve				0
		V			I	Time	Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	Comments
	1/	/		18.78	~	1217	1220	/	18.67	1.0	Nos 2 1.08
	/ /			18.65	,/	1246	1244	/	18.68	1.6	2nd run where Samples now-1911-039
			/	14,59	~	i 30 B	1310	/	17,54	vák.	Vocs metals 3 ANIONS 3 N AN TO Screen 2, Corto, Cloy and final farameters
						·					
			•								
عن ن	Presis.	Eness. Oviside Wp	Press. Oviside Wr 83,5	Press. Oviside Wr & 83.36	Press. Outside Wf = 83,36	Press. Onside Wr 83,36	Pross. Oviside Wr & 83.36	Press. Oviside Wr = 83,36	Press. Oviside Wr & 83.36	Press. Oviside Wr = 83.36	Press. Orside We 83.36

Proje	oct:			PL			Location: Deploy								Date: 3/18/9	9
Well	Name:	MW-	7	San	npling Z	one No.:_	.: <u> </u>							inishing Time:	1050	
Tech	nicians_	ج. د	oner	iner	D	, DIZ	4,1									
Wate	r Level i	Inside MP Ca	sing (Be	eginning of	/ i Session	n) (r	79.9	80 (P	5,27			(1	End of Ses	ssion)	1.49 (B.A)	
	÷.	Surface Fu	nction C	hecks		Position Sampler			Surfac	e Collec						
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)		Comments	
1	/	レ	/		ب		79,90	/	0846	05%	<u></u>	79.82	1.0	15-124, 1411 NLOS =	TAR PARMHETERS; 6.25 LEUT MJ-991-038 DIOKANE; 1/2 NOW	
2	V	✓	V	V	レ	1	79.81	V	ज्या	0913	/	79.50	10	ZWAS 3/4	120 MJ-991-038	,
3	V	V	V	~	V		79,84	7	0940			77.81	ا,ك			1
4	/			V	'س	/	79,79	\	1020	102.2.	i/	79.79	1,0	4774 12211/1/2 ANIUNS	LNIDMA; METALS	,
5	~	V	V	~	V	V	77.50	/	lock	1045	V	77.49	6.5	ANGUNS STARING CA FNAL PAR	Cor, Cloy;	
6																
7																
8															,	
9	•															
10																
11																
12																
Comi	ments:	Roets.	٥٠٠,	5102	MP	CRS, N	= 12	1.61	(PS	514)					Total Volume: 4.5	
												· · · · · · · · · · · · · · · · · · ·				

Page	of	
------	----	--

Proje	ect:	Trl						Locatio	n:	Mw-	17		D	epth: 528 582 Date: 3-10-49
Well	Name:													Finishing Time: 1200
		D. Die												
										ssion)				
	Surface Function Checks Position Sampler							Surfac	e Collec	tion Chec	ks			
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	Comments
1	V	/	/	/	V	V	110.48	/	1030	1636	/	111.05	1.0	1ST RUN TO SCREEN Y. TOTAL PARAMOTER NOT 479
2	V	V	1	V		1	110,99		1106	1109	/	111.02	1,0	and Run, where mu, 491.037, wis,
3	1/	/	/	/	سبد	/	110.45	/	1134	1137	/	111.02	1. D	unon's priors 3rd Rus. Crts, Clay 3 find param. 16 strees 4
4	· ·													
5														
6														
7														
8														
9	'			-				ļ						
10														
11														
12														
Com	ments: <u> </u>	1 zu fress. (Mide	Wb :	147.	54								Total Volume: 301

Page		of .	1
------	--	------	---

Proje	ect:	TPL						. Locatio	n:	MUS	-17		D	Depth: 7261 Date: 3-10-99 Finishing Time:
Weli	Name:	Mw-17		San	npling Z	one No.:_	5	70 T	Stai	rting Tin	ne:()	852	F	Finishing Time:/6/0
Tech	nicians	D: D14	KIN	<u>n</u> .	FEID	BRISCI	A T.	May	ES		M. 49.9.9.			
Wate	er Level	Inside MP Ca	sing (B	eginning o	f Sessio	n)	(ח	3.49	(PS	,0)		(End of Sea	ssion) 173.49(75.03)
	:	Surface Fu	nction (Checks		Position Sampler			Surfac	ce Collec	tion Chec	ks	######################################	
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Retrieved	
1	/	./	i		V	/	173.49	/	906	909	/	173.52	1.0	IST Now TO SENSED 5, THEIR PARAMETERS NOW; 17.8 116
2	~		:/			/	173.50		946	943		173.49	1.0	Attemptions to 1250/CE Terribility NTG:= 138:
3	v,												· · · · · ·	DELIDED TO SHAPE RECEN 4
4														
5	, .													
6		2 (m) 24 (m)												
7								•						
8														
9	•													
10														
11														
12														
Com	ments:_]	tu freience s	ભારા પ્રક	mp= 20	5,53 p	SIN								Total Volume: 2.0 2

园

Page 1 of 1	
-------------	--

		1	0							N /				Tield Data Sheet for Multi-Fort Well
Proje	ect:			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Locatio	n:	1010	1-1/		D	epth: 726 Date: 3/15/99
Well	Name:		17	San	npling Z	one No.:_			Star	ting Tin	re:	070	F	Finishing Time: \A30
Tech	nicians_	2.757	2011	152	, I	MAYE	-							
Wate	r Level	Inside MP Ca	sing (Be	eginning o	f Session	1)	3.18 (-	PSIA					End of Ses	ssion)190,88 (FSIA)*
		Surface Fu	nction C	Checks		Position Sampler			Surfac	e Collec	tion Chec	ks		
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	Comments
1	レ	- ~	V	v	V	\ <u></u>	173,18	7	10351	1043	V	173.15	1.0	IST RUN'INITIAL PARAMETERS; NTUS = 12.4
2	V	~	V	U	~	<u></u>	173.15	レ	1114	רוון	_	173.18		ATTEMPTING TO REDUCE TURBIDITY NOS = 99.3 BIND IUN! AFTER PURGING X
3			V	/	ب	~	191,86	レ	1310	1313	٧	191.57	11.0	GALS 11705=23,5
4	Ú/	V	V	V	<i>\(\)</i>	- ~	191.90	<u></u>	1347	1.351	سا	191.88	10	210AS MEMOS ANIUNS Cross
5		V	7	V	1	V	190.39	V	1418	1421	~	190,80	0.5	FINAL PARAMETERS
6														
7	-													
8	:													
9														
10	· · · · · · · · · · · · · · · · · · ·													
11														
12														
Com	ments:	APPRO							-6~	PJ:	15 Z	73/1	he. v	Total Volume: 4.5

age	 of	<u> </u>
_		

Proje	oct:		JPI					Location: MW - 18 De De Starting Time: 1445 F						epth: 270	Date: 2/24/95
Well	Name:	MW	18	San	npling Z	one No.:_			Star	ting Tim	ne:	44.5	F	· ·inishing Time:	1540
Tech	nicians_	1.Br	RMI	ser -	B,	FELO	TAUS (4					,,,	_	
Water Level Inside MP Casing (Beginning of Session) 13.37 (PS.+X) (End of Session) 13,37												3,37			
		Surface Fu	nction C	Checks		Position Sampler			Surfac	e Collec					
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)		Comments
1	V		/	V		V	13,37	~	1451	1455	1	13.42	1,0	NTUS : C	7.67 0.67 0.67
2	سا		4	L	<u></u>	レ	13,55	i	1509	1513	سيا	13,75	1,0	ZYGAS ME	OCTECT MUL-991-035
3		V	ン	V	レ	/	13,52	V	1530	1535	U	13.60	1.0	BNAL T	OCTECT MW-991-035, THUS AMIONS Crof, Clod PORPMORES
4															
5															
6															
7															
8															
9															
10															
11															
12															
Com	Comments: These, outside MP. Cas., $S_6 = \frac{16.99}{(PSIA)}$ Total Volume: 3.0^{12}														

	i		1
Page		of	

210	: 330 Date: 2/24/99
Surface Function Checks Surface Function Checks Surface Collection Checks Water Level In MP (ft) Open Closed Time Closed In MP (ft) Remove Tape Retrieved (filters) 1	ning Time:1435
Surface Function Checks Surface Function Checks Run No. Activate Vacuum Check Valve Closed Open Container Consed Consed Container Container Container Consed Container	
Run No. Activate Vacuum Check Valve Closed Open Container Closed Port Closed Port In MP (ft) Activate Open Closed In MP (ft) Open Clos	13.52 (PSA)
No. Activate Valve Closed Valve Closed Valve Closed Open Valve Closed Container Valve Closed Valve Closed Image Valve Clo	
2 V V V V V V 13.46 V 1465 1405 V 13.96 1.0 2 NO 2 N	Comments (J.3)
3 V V V V 13.46 V 1430 (433 V 13.52 1.0 The state of the	NTUS = Z,71 DRUM, COLLECT MW-991-034
4	VOAS MEMUS, ANOUNS GLEA
5	VOAS METALS ANIONS CIEF 20 RIN COOFFINAL Parcometars
6 7 8 9 10	
7	
8	
9 10	
10	
	
11	
12	
Comments: Press OUTSINE MP CASING = 53,52 (751A)	Total Volume: 3.0

/		_
Н	- A	H
И	M	II
U	M	IJ
•		_

Proje	ect:	Principa	17C		···········			Locatio	n:	Mu	ر ۱۶	ذ	D	epth: 42	Date: 2	124/99	
Weli	Name:	MW	-12	> San	npling Z	one No.:_	3		Star	ting Tin	те: <u>\</u>	45	F	inishing Time:	1335		
Tech	nicians_	1.73	ENI	ier,	B.	FELL	5P4US	cH.									
Water Level Inside MP Casing (Beginning of Session) 37. 21 (PSIA) (End of Session) 36.23 (PSIA)														(1/4)			
		Surface Fu	nction (Checks		Position Sampler			Surfac	e Collec	tion Chec	ks					
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	I yiotivato Obeti		Valve Closed Time Deactivate		Romaro Tana	Volume Retrieved (liters)	1			
1	/	V	i	V)	1	37.21	V	1254	1250	V	37,20	1.0	IST RUN IN	VITAL PAKE	AMETERS,	
2			V	V	\	1	37.W	2	1315	1318	V	37.31	1.0	ZYOAS N	NITTAL PARA NITTALS AND NITTALS AND PARAMETERS	MJ 541-1833	
3	V	V	V	~	<i>V</i> .	1	36.23	7	1323	1325	~	34,23	6,5	300 12	Durant Tr	FNAL	
4																	
5																	
6																	
7																	
8													,				
9		·															
10																	
11														,			
12		<u></u>															
Com	ments:	# PRE	5 5. (0551)SE	MP	C45,76	, <i>7</i>	95,5	50 ((PS1A)				Total Volur	me: Z, 5 F2	

Page	 of	<u>l</u>
	 	_

Proje	oct:		JP1	<u> </u>			4	Locatio	n:	M	104	epth: 564 Date: 2/24/99				
Well	Name:	MW-	18	San	npling 2	one No.:_	4	· · · · · · · · · · · · · · · · · · ·	Star	ting Tin	ne:	1170	Finishing Time: 1240			
Tech	nicians_	1.30									 		· ·			
Wate	r Level	Inside MP Ca	sing (Be	eginning o	f Session	ገ)	78,2 ⁻	7 (F	<u>~</u> 5,∆	7		(End of Ses	98.19 (PS/A)		
	· .	Surface Fu	Checks		Position Sampler			Surfac	e Collec	tion Chec	ks					
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)		Valve Valve Open Close Time Time		Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	Comments		
1	V	V	V	V	V	~	9B.Z7	V	1436	1435	i	98,30	1.0	NOU'S = 2,67		
2	V	V	~	~	V		98.26	V	1201	1203	~	98:26	1,0	NOTU'S = 2.67 2NO RIN, QUELT MW 991-032, MW 991-032 MS/MSD, GVSAS METAY		
3	M	an i	a	100	W.	30	3320	· Plant	12252	1.3	>			1/2 ANIONS CHARGO		
4	V	V	V	V	V	V	98.20	'	1228	1230	~	98,19	1.0	FLAT PACAMETERS		
5																
6													-			
7	•															
8																
9																
10																
11																
12																
Com	ments:_	Press	, O	J511	ズ	MP	G15.	,56	= (5	4. 22				Total Volume: 3 の ゆ		

	Page of
FOSTER WHEELER ENVIRONMENTAL CORPORATION	

Proje	et:		<u>JP</u>	ر			,	Locatio	n:	<u>r</u>	epth: 634 Date: 2/24/99			
Well	Name:	MW-	18	San	npling Z	one No.:_	Location: D							Finishing Time: 109
Tech	nicians_	J.Bit	とうか	22 -	B. +	EUD T	DUSCH		···-			······································		
Wate	r Level	Inside MP Ca	sing (Be	eginning o	f Session)(r	155,5	9	(PS/	A)	•••	([End of Ses	ssion) 149,43 (PS,A)
	<i>:</i> .	Surface Fu	nction C	Checks		Position Sampler			Surfac	e Collec	tion Chec	ks		
Run No.	Activate	Vacuum Check Valve Closed			Activate	le Open Closed Deactivate			Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)				
1	/	V	V	V		V	150,59	V	0952	6954	V	150.54	1.0	1ST RIN' INITIAL PARAMETERS; MITUS = 1.98 ZMD RUN COLLET MW-991-031 ZVOAS, METALS ANJUNS, C. 64 "SRDRIN' CLOY FINAL PARZAMETERS
2	V	L	V	V	V	V	150.51	V	1021	623	i/	150.50	1.0	ZND RUN COLLET MW-991-031 ZVDAS, METALS, ANVUNS, G-64
3	.1	V	V		Ļ	//	149,45	V	1055	1057	V	149,43	0,5	BRDRIN, Clo4, ANAR
4	<u>:</u>		. !											·
5	·													
6														
7	-													
8														
9														
10	···-													
11														
12														
iom	ments:	Press	. <u>С</u>	, د کرد	Œ	MP	CAS,	۵6	= Zc	2.03	3 (T	(412		Total Volume: Z, 5 13

W

	1		,
Page_	1_	of	

Proje	et:		\	PL				Locatio	n:	M	Depth: $\frac{Z+2}{D}$ Date: $\frac{Z/26/45}{D}$			
Well	Name:	<u>Mu</u>	-19	San	npling Z	one No.:_	(Star	ting Tin	ne:l	Finishing Time: 1445		
Tech	nicians_	<u> 1.30</u>	ZENA	iar -	B. 7	ZECD	PAUS	CL						
Vate	r Level	Inside MP Ca	sing (B	eginning o	f Session	n)	13.9	75 (i	多 ,A	.)		(End of Ses	ession) (3 57(75,4)
	<i>:</i> .	Surface Fu	nction (Checks		Position Sampler			Surfac	e Collec	tion Chec	ks		
Run No.	Activate	Deactivate						Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	·
1	ν		V	V	v	V	13,95	س	1346	1349	V	13.74	1,0	IST RUN; INITIAL PAREATETER NTV 5 = ZNIO IZNI COLLECT NW -991-03
2	1/		V	V	W	V	13.97	1	14:18	1422	1	13.99	1.0	ZNO RUN' COLLECT MW -991-03
3	V	V	V	V	V.	V	13,95	V	1435	1439	V	13.97	0.5	2 YUAS METALS ANIONS BEN THE CALL CONS HIMA PARAMETERS
4	:													
5														
6														`
7														,
8														
9														
10														
11												· · · · · · · · · · · · · · · · · · ·		
12														
Iomi	ments:	PRESS	, 0ر	its,de	MP	CASINO	, = 5	1.21 (i	P3,A)					Total Volume: 2.51

FI
\\W /
\/

Page ____ of ___

Proje	et:		<u> 1</u> 8	^ا ل				Location	n:	10	J-19				2/26/99		
Well Tech	Name: nicians	MW 2.B	-19 Na~11	San	npling Z	one No.:_ FELD	PAUSC	H	Star	ting Tim	ne:\Z						
Wate	er Level i	Inside MP Ca	sing (Bo	eginning o	f Session	n)	/3	5.95	(F	25/A)		(End of Ses	ssion)	13.98(P	5,4)	
	:	Surface Fu	nction (Checks		Position Sampler			Surfac	e Collec	tion Chec	ks					
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Remove Tape	Volume Retrieved (liters)		Comments		
1	V	V	V	~	-	1	13.95		123%	1241	レ	14.02	1.0	ISTRIN	1N17AL 5 = 3.94	PARENTERES	
2	<i>''</i>	/	V	V	~	~	13.78	~	1257	1300	~	13,96	1.0	ENID RUN	METALS 4	MW-991-029 MW-991-029 MICONS 104) FINAL	
3	/	V	1	~	ب	V	13,70	V	1327	1330	V	13.90	0,5	3rp RSN	7416-AMET	104 FINAL	
4										·							
5						_											
6														·			
7																	
8																	
9	•																
10																	
11																	
12																	
Com	ments:_	PRE	3 5.	055) (DE	MP	CAS	~16	= 0	3.0	0	(Ps.0)	S		Total Vo	lume: 25 /F	
		· · · · · · · · · · · · · · · · · · ·	······································				· · · · · · · · · · · · · · · · · · ·										

MI.

	*-		1
Page	-	of	- 1
. ~9~		•	

Proj	ect:		PC					Locatio	n:	M	1- LN	9	D	epth: 392 Date: 2/20/99 Finishing Time: 120
Well	Name:	MU	-19	San	npling Z	one No.:_	<u> </u>		Star	ting Tin	ne:\	105	F	Finishing Time: 120
Tect	nicians_	Inside MP Ca	312	~ Nex	TB.	FELI	>5PA	JSCT	<u> </u>					
Wat	er Level	Inside MP Ca	sing (B	eginning o	/ f Session	า)	44.4	7 (f	?s , 🛆	>		(End of Ses	ssion) 44.4 (PS.41)
	Surface Function Checks Position Sampler Surface Collection Checks													
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	Comments
1	✓		1	~	_	-V	44,47	V	1113	1115	V	44,45	1.0	NTUS = 411
2	V	V	V	V	2	~	44.41	V	1133	1136	W	44,42	1.0	15+ 1211 / NITIAN PARAMETER NTUS = 4.11 ZNO 1211 COLUMN - 041-028 - - 028M5 - 028M51) Grows 2MANALS 1/2 AM. JN 5
3	-		_	_	- .	_	-	-	_	_	_	-		1/2 AM. UNS
4			V	-	1	/	44,45	V	1200	1202	V	44.41	1.0	BNAL PARAMETERS
5														
6														
7														
8														
9	•												····	
10														
11														
12				į										
Com	ments:	Pres	5 5. ()7 <u>12</u> ,	rs/F	MP	CAS,~(, = \	117.	12	(PS1.	۵)		Total Volume: 3.0 £ F2

/ ////	

Page _____ of ____

Proje	ect:		SP	'د				Locatio	n:	Mu	N-19)	D	epth: 444 Date: 2/26/99
Well	Name:	MW-	19	Sam	npling Z	one No.:_	4		Star	ting Tim	ne:	950	F	epth: 44 Date: 2/2 6 /99
Tech	nicians_	J. Bre	~~~	n;	B. F	ELDS	325CA	-1				<i></i>		
Wate	er Level	Inside MP Ca	sing (Be	eginning of	Session	n)	67.20	f (P	SIA	7		(End of Ses	ssion)
		Surface Fu	nction C	hecks		Position Sampler			Surfac	e Collec	tion Chec	ks		
Run No.		Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Ramova Tana	Volume Retrieved (liters)	Comments
1	~	v	1	V	V	~	67.24	~	1004	1006		67.25	1,8	NIN'S = 4.38
2	V		1	V		٤	67,23	ŀ	1027	1029	w	67.24	1,0	ZVOAS, METALS ANIONS CLES
3	/	V	V	V	<u>ر</u>		67.20	4	1048	650	V	67.21	1.0	IST RUN' INITIAL PAREMETERS NITU'S = 4,38 ZNID RUN; COLLECT MW. 991-027 ZVOAS METALS ANIONS CLES SED RUN' CLO4 FINAL PAREAM STRES
4														
5														
6														
7														
8	:													
9														
10														
11														
12								<u> </u>						
Con	nments:_	PR35.	0	JT511	<u> </u>	MPC	ASIN	<u>(;</u> =	139.5	36 (PS/A	7		Total Volume: 3.00 F
								····						

\W /	

	1		1
Page		of	1

Proje	oct:		JPC					Locatio	n:	Mu)-15	ì	D	pepth: 498 Date: 2/26/99
Project: Location: MW-19 Well Name: MW-19 Sampling Zone No.: S Starting Time: OS35 Technicians J. BRENNER B. FELDSPASCH										F	Finishing Time: 0945			
		Inside MP Ca)		{	End of Se	ssion) 89.72 (Psw)
	÷	Surface Fu	nction (Checks		Position Sampler			Surfac	e Collec				
Run No.	Activate	Vacuum Check Valve Closed	Valve Open	Evacuate Container	Valve Closed	Deactivate Set Arm Locate Port	Water Level in MP (ft)	Activate	Valve Open Time	Valve Closed Time	Deactivate	Water Level in MP (ft) Remove Tape	Volume Retrieved (liters)	Comments
1	V	V	L	1	٧	/	90,84	سا	0842	02×14	W	90,00	1.0	IST RUN' IN ITIAL PARRITMENTS.
2	V	V	7	~	2	1	90.77			0912		90.75	1.0	ZNO RIN, COLLECTIM-791-026. ZVOAS METARS ANYONS CLEA
3	1/	V	1	U	1.	V	87.73	<i>\</i>	<i>6</i> 735	0937	V	89.72	0,5	ZND RUN; COLLECTIONS GGA ZVOAS METARS ANIONS GGA BROKEN; CIDA; FINAL PANAMERCS
4	:•													
5														
6														
7														
8											i			
9	•													
10														
11														
12			,									·		
Com	ments:	Press	, 0	π 5 πο	£ }	ر جهر	£15,10(5 = (1	62, C	ì2	(PS	· * \)		Total Volume: Z,5,L F2